

TASKING Embedded Profiler Product Overview

Innovative Smart Profiling Technology™ – Remove Bottlenecks in a Fraction of
the Time

TASKING® EMBEDDED PROFILER — OVERVIEW 3

Smart Profiling Technology™	 4

THE ROOT CAUSE OF HARDWARE PERFORMANCE ISSUES: STALLS	 5

Traditional Profiling 	 5

Smart Profiling with the TASKING Embedded Profiler 5

Memory Traces Made Easy	 5

Target Device Resource Usage	 6

AN EXAMPLE WORKFLOW IN THE TASKING EMBEDDED PROFILER	 7

1. Compile and Flash Target Application	 7

2. Smart Profiling	 7

3. Revise Application	 12

4. Recompile, Reflash, and Reprofile to Verify Improvement	 12

5. Iterative Improvements 13

PERFORMANCE REGRESSIONS							 14

RETURN ON INVESTMENT 								 14

USAGE SCENARIOS WITH THE TASKING EMBEDDED PROFILER		 14

Quality Assurance for Software from Suppliers					 14

Realistic Timing During Function Development (Applications)		 14

Optimization (OS, Drivers, Libraries, Applications)				 15

Regressions after Code Changes (All Code)					 15

Fire-Fighting Timing and Performance Issues						 15

SUMMARY	 										 15

TASKING Embedded Profiler Product Overview

Required for Traditional Measurement Profiling

TASKING® EMBEDDED PROFILER — OVERVIEW

Traditionally, profiling is associated with measuring execution times of functions. Knowing that a function takes a
specific number of clock cycles or milliseconds to execute doesn’t help determine whether the function itself can
be improved. Nor does that timing information indicate which code or setting needs modification to significantly
improve the function’s runtime on a specific target device.

Unlike existing profilers that measure only function runtimes, the TASKING® Embedded Profiler has built-in expert-
level knowledge about the AURIXTM microcontroller inner-workings so that it can:

•	 Identify functions and code lines that unnecessarily waste large amounts of core time because they misuse
hardware resources within the microcontroller.

•	 Explain the root cause of these performance bottlenecks.

•	 Provide concrete mitigation suggestions to quickly resolve the bottleneck with minimal effort.

After a brief, non-intrusive analysis of your code’s runtime behavior using a simple USB cable or inexpensive
mini-wiggler connected to your AURIX board, the profiler tells you exactly which assembly, source lines and
configuration settings cause the biggest slowdown, the root cause of that slowdown, and what you should do to
fix the specific problem. After fixing the problem, you can compare function runtimes measured by the tool before
and after the fix to evaluate what speedup was achieved.

The TASKING Embedded Profiler is a 64-bit application to ensure fast operation and the handling of large
Embedded Profiler trace files.

When applying the profiler’s Smart Profiling TechnologyTM to code running on a new microcontroller, significant
speedups can often be achieved within a few hours of work because the small changes needed to improve the
code (without altering what is computed) are found immediately, and the improved code better utilizes the
microcontroller-specific hardware resources.

TASKING Embedded Profiler Product Overview

Smart Profiling Technology™

The TASKING Embedded Profiler’s Smart Profiling Technology offers many benefits:

•	 Built-in, expert-level knowledge about the inner-workings of the AURIX family of microcontrollers, such as the:

•	 Memory system and cache behavior

•	 Branch prediction and instruction pipeline behavior

•	 	Clock frequency settings

•	 	On-chip debug system

•	 	And more…

•	 Brief, non-intrusive measurement of an application’s misuse of specific hardware resources.

•	 User-friendly graphical representation of the root cause (source lines and reasons) that generate the biggest

slowdowns.

•	 Concrete mitigation suggestions for different root causes to quickly fix the problem.

•	 Compare function and application runtimes before and after applying a mitigation to document the real-

world performance improvement.

•	 Quick turnaround time, often improving application performance significantly within a few hours.

•	 Performance bottlenecks are analyzed for the entire application or for a user-selected subset of functions,

and the results are presented in order of descending severity — spend your time where it matters most.

•	 Easy to use for non-experts: Start the TASKING Embedded Profiler, attach to your device, measure, and

implement mitigations to improve performance. No expensive probes, special knowledge about the
hardware, or preparation of the application are required.

•	 Standalone tool can be used with any application (regardless of compiler tool set and programming

language1) running on the supported target cores.

The following sections discuss a typical workflow of the TASKING Embedded Profiler. They use concrete examples
and give details on how the profiler functions.

1 Source-level information is limited to C code compiled with DWARF 3-compatible tool chains. Otherwise, assembly
level information is provided.

TASKING Embedded Profiler Product Overview

THE ROOT CAUSE OF HARDWARE PERFORMANCE ISSUES: STALLS

A stall occurs when the microcontroller is blocked from performing useful work (i.e., executing your program).
Instead, the microcontroller consumes energy and time to resolve the stall.

For example, most multi-core microcontrollers do not have a constant memory access speed. Specific cores
can access specific memories faster than others. If data that is placed in a slow-to-access memory is frequently
accessed by a specific core, then that core will spend most of its time stalled, waiting for data rather than doing
useful computations.

Depending on the specific microcontroller, many types of stalls can occur that are not visible to the developer. The
program delivers no error or warning; the same result is generated, regardless of the number of stalls.

Because many stall types are invisible to the application, it is not uncommon that — without the knowledge of the
developers — even mature applications may spend between 30 and 70 percent of their operation time stalled.

Minor changes to the compiler settings, program code, or memory layout (e.g., moving a variable from a slow-
to-access memory to a faster-to-access memory) can usually eliminate a large portion of the stalls so that the
program runs significantly faster while computing the same results as before. However, incorrectly changing
compiler settings, program code, or memory layout can introduce many new stalls.

Traditional Profiling

Using a traditional profiler that merely exposes function runtimes, you are left to guess — maybe employing your
gut feeling and many years of experience with the specific hardware — what changes might reduce the number of
stalls. You can compare runtimes before and after a change that seems promising, and by spending a lot of trial-
and-error time, you might find a few improvements.

Smart Profiling with the TASKING Embedded Profiler

In addition to the function runtimes, the TASKING Embedded Profiler displays a graphical summary about which
functions generate the most stalls so that the problems causing the most significant slowdowns can be easily
identified and attacked without guesswork. You can then drill down into each function to find the problematic
source lines and assembly instructions.

It is not necessary to have a deep understanding of the hardware or different stall sources. The profiler
compares your measurement results to knowledge about the stall behavior of applications that are known to
use the hardware resources well. Using this reference, the tool evaluates which functions and source lines have
abnormally high stall rates, and it offers mitigation suggestions to fix these specific problem instances. The tool
infers the mitigation suggestions from the measured stalls in combination with in-depth knowledge about the
target specific stall sources. This knowledge is encoded into the profiler itself.

The profiler’s data collection works by gathering statistics about program instructions (assembler instructions that
are translated into source lines using debug information) that generate stalls within the target microcontroller
using non-intrusive hardware tracing.

Memory Traces Made Easy

This type of analysis traces function calls, function returns, and data accesses. You can run memory traces on the
whole application or selected specific functions. Memory traces are an important aspect of optimizing applications
using the Infineon® AURIX™ family of microcontrollers. These microcontrollers are very complex, with several CPU
cores on the same die. Each CPU core has local memory but can also access the local memory of the other cores
and the general memory on the board.

TASKING Embedded Profiler Product Overview

These cross-memory accesses can affect application performance because the shared data bus is used for each
read or write data request from one CPU core to the memory, which is local to another CPU core or to the general
memory. Accessing memory that is not local to the CPU core takes significantly longer than local memory access,
and it blocks all other CPU cores that want to read or write memory from other local memory or the general
memory. (This blocking is called a “stall.”) Optimizing memory access provides a substantial opportunity to speed
up your system and improve its reliability.

Using a traditional debugger, tracing and optimizing memory access is quite difficult. But the TASKING Embedded
Profiler traces all memory accesses in a non-intrusive way and highlights accesses to non-local memory, in
correlation with the function names and the source code. It points to where you can start optimizing the source
code.

You can choose to run a one-shot trace, which ends when the hardware trace buffer is full, or when the
application finishes, or when you manually stop the analysis. Alternatively, you can run a continuous trace, which
ends when the application finishes or when you manually stop the analysis. The profiler makes raw trace data
available for advanced analysis (an example appears later in this document).

Target Device Resource Usage

The profiler uses the Multi-Core Debug Solution (MCDS) for on-chip trace support. Trace information is stored in a
dedicated trace buffer. With an emulation device you can allocate part of the emulation memory (EMEM) as trace
buffer memory. The EMEM is divided into blocks of RAM, also called “tiles,” which can be used as calibration or
trace memory. Three types of trace memory are supported:

•	 Trace Calibration Memory (TCM) — used for trace memory or for calibration

•	 Extended Trace Memory (XTM) — used only for trace memory

•	 miniMCDS Trace Memory (TRAM) — used for trace memory on production devices equipped with mini-MCDS

For TCM, you can choose which part of the EMEM should be used for tracing. For XTM, both tiles are always used
for tracing. Be certain that the same tile memory range used for tracing is not used by the target application, as
this can lead to unexpected trace results. The number of tiles vary per emulation device.

TASKING Embedded Profiler Product Overview

AN EXAMPLE WORKFLOW IN THE TASKING EMBEDDED PROFILER

This example shows how the TASKING Embedded Profiler works on a specific example. Generally, the workflow
follows this pattern:

1.	 Compile and flash target application
2.	 Analyze problems and find new improvements using the profiler
3.	 Revise application
4.	 Recompile, reflash, and reprofile to compare results and verify improvement
5.	 Repeat the workflow until you are satisfied with your application

1. Compile and Flash Target Application

We will investigate the following simple application:

#include <stdio.h>

#include <time.h>

#define ARRAY_SIZE (16 * 1024)

volatile int x[ARRAY_SIZE];

int main(void)

{

	 clock_t clockstart = clock();

	 for (int i = 0; i < ARRAY_SIZE; ++i)

 {

 	 x[i] = 1;

	 }

	 int duration = (int) (clock() - clockstart);

	 printf("duration %i ticks\n", duration);

}

First, because you want to measure performance, the application should be compiled with the highest allowed
optimization settings and flashed to your target device. Running the application will provide similar information to
using a traditional profiler. That is, the execution time of the for loop computed using clock() is (for example)
73,754 ticks on a specific device. It seems that not much could go wrong with this application.

2. Smart Profiling

The TASKING Embedded Profiler is a standalone application. Thus, you must create a project that will store both
your application data (links to folders containing the target application and sources) and the smart profiling
results. This only needs to be done once before you start profiling an application.

After you create the project, select what you want to optimize in the corresponding analysis. The profiler supports
several types of analysis, depending on the problem type you are investigating (see the Analysis Configuration
Options sidebar). You will typically start with a “Performance Analysis” to get a high-level overview on the biggest
issues. Simply click the Plus button, follow the Wizard to create a new Performance Analysis, and run the analysis
once by selecting it in the project tree on the left and pressing the Run button (see Figure 1). For this example,
we’ll keep the default Result name "Result-1” and then start the analysis by pressing Run.

TASKING Embedded Profiler Product Overview

Figure 2: The project tree on the left hand side allows you to navigate previously configured analyses and analysis results.
The right hand side shows the summary of the performance analysis. In this example, the main function generates an
unusually high number of stalls. 88% of the CPU time is wasted. Clicking on “main” in the graph will drill down into the

function level results, as shown in the Hotspots chart.

Analysis Configuration Options

Trace mode: Trace until trace memory is full or upload from trace memory while tracing (may
cause short stops in the application being traced while trace memory is read).

Attach mode: Reset device before measurement or keep current system state.

Raw trace data: Select “Save and display” to see the raw trace data.

Core index: Specify which core to measure on (currently only the code running on one core can
be analyzed at a time).

Trace memory: Select the appropriate type, depending on the device. Options include Trace
Calibration Memory (TCM), Extended Trace Memory (XTM), and miniMCDS Trace Memory
(TRAM).

Tile range: Specify which part of the trace memory the profiler should use for tracing (this
allows you to allocate parts of the trace memory for other applications).

Figure 1: A new performance analysis can be easily created using the Wizard.

TASKING Embedded Profiler Product Overview

Figure 2: The project tree on the left side allows you to navigate previously configured analyses and analysis results.
The right side shows the Performance Analysis summary and Performance Hotspots. In this example, the main function

generates an unusually high number of stalls, and 88 percent of the CPU time is wasted.

Within a few seconds, the profiler collects analysis data from the hardware and computes the results. The analysis
summary appears at the top-right side of the screen (see Figure 2). The summary shows that the application
spends 88 percent of the execution time stalled (red highlighted key performance indicator); without these stalls it
would finish about eight times faster (in about 36K clocks instead of the current 301K clocks).

TASKING Embedded Profiler Product Overview

The Performance Hotspots chart shows the functions where most time is spent during program execution. These
should be improved first to yield the largest performance gains. Double-clicking on the red bar beside “main” in
this chart opens the combined source and analysis results view for function “main” (see Figure 3).

Figure 3: Function-level analysis results for “main”. The stall column from the results table on the
right indicates that the line, which writes the constant 1 into the array x, causes excessive stalls

(almost one stall per clock executed on the instruction). Source and Disassembly tabs are shown.

TASKING Embedded Profiler Product Overview

Figure 4: The example code is running in core 0. The “DSPR2 accesses” KPI highlighted in red in the summary tab shows
the main problem. When hovering the mouse over the KPI, the tool indicates that core 0 makes too many accesses to

DSPR2, which is the core local memory of core 2 (rather than using its own and much faster-to-access DSPR0).

The table on the right of the source view indicates what stalls were measured for the corresponding source line
or assembly instruction. Using this table, you see that the for loop in line 20 of Figure 3 causes a high number
of generic stalls (almost one stall for every clock cycle). The stalls are generated by the assembly instruction
(highlighted in yellow) which writes the constant 1 into the memory that holds the array x and the root cause lies
in the memory subsystem.

Using the Performance Analysis, we instantly identified the most significant slowdown and that the root cause lies
in the memory system. To pinpoint the root cause in the memory system and find a mitigation for the problem,
we will execute a Memory Analysis. After clicking the New Analysis button to create a Memory Analysis and
running it using the default parameters, the profiler exposes the exact stall cause (see Figure 4 and Figure 5).

Figure 5: The main function is listed in the Memory Access tab and hovering the mouse over the region DSPR2 that
contains most inefficient accesses in main reveals that the cause is the accesses to the global array x. As mitigation for

this problem, the tooltip suggests to move x into the scratch-pad memory of core 0, i.e., DSPR0.

TASKING Embedded Profiler Product Overview

To further examine the program flow, you can access the Raw Trace Data tab (see Figure 6). Raw trace data is
useful, for example, to see why stall cycles are assigned to instructions that do not access memory. This can be the
case when an instruction is the target of a branch. The Raw Trace Data tab has a search field that you can use to
search the address column.

3. Revise Application

The root cause of the biggest performance problem has been identified using two quick measurements, and
the analysis results from the profiler are shown in Figures 2 and 3. The application can now be easily improved.
When using the TASKING toolset, the global variable x can be moved into DSPR0, as suggested by the profiler in
Figure 5, by changing the LSL linker script or by adapting the declaration of the global array:

volatile __private0 int x[ARRAY_SIZE];

4. Recompile, Reflash, and Reprofile to Verify Improvement

After recompiling and reflashing the application, including the minor change described above, you can execute
another Performance Analysis to verify that you fixed the problem and to find new optimization opportunities.

The diff in Figure 7 clearly shows that the improvement was highly successful. The improved application computes
the same result as the original one about eight times faster. Average stalls per clock are reduced from almost 90
percent to around 10 percent. No relevant number of new stalls was introduced by the change.

Figure 6: The Raw Trace Data tab is for advanced users who want to examine program flow. Raw trace data is
useful, for example, to see why stall cycles are assigned to instructions that do not access memory.

TASKING Embedded Profiler Product Overview

5. Iterative Improvements

After verifying the effectiveness of the first improvement, the next biggest performance issue can be resolved
by investigating the results of the second Performance Analysis. You can repeat the entire procedure until all
relevant performance issues have been resolved. One iteration typically takes 10 to 20 minutes, and the profiler
exposes the problems in order of decreasing severity so that after a few iterations you realize the most serious
performance gains.

In addition to the memory problem investigated here, the TASKING Embedded Profiler exposes all other types of
stall that are visible through the hardware so you feel confident that the hardware is being used to its maximum
after eliminating the problems visible in the profiler.

Figure 7: The profiler computes the difference between analysis results so that you can easily compare results
from before and after a modification. This chart shows the diff between the initial result obtained after

moving x into DSPR0.

TASKING Embedded Profiler Product Overview

PERFORMANCE REGRESSIONS

Once you have addressed the major slowdowns caused by stalls in your applications, drivers, and OS, you should
monitor changes made to any of these components. Through the profiler’s command-line interface, you can
automatically re-execute a previously configured analysis and export the result (or the diff) as a comma-separated
value (CSV) file. By comparing current and previous performance statistics as part of your build or development
process, changes to any software component that adversely affect the performance through unnecessary
hardware stalls can be easily identified and resolved.

RETURN ON INVESTMENT

Table 1 shows the cost savings (in terms of time spent to achieve comparable results, the necessary hardware,
and the software licenses) when comparing traditional profiling to the TASKING Embedded Profiler solution.

USAGE SCENARIOS WITH THE TASKING EMBEDDED PROFILER

Typical use cases for smart profiling tools include several scenarios.

Quality Assurance for Software from Suppliers

The profiler enables automated monitoring and verification of the performance characteristics of your suppliers’
software. To ensure the best software quality, you can define performance thresholds like maximum stall rate,
maximum jitter, or maximum execution time for functions that are developed by a supplier, and then use the
profiler to automatically find violations of these criteria for code delivered to you.

Suppliers can use the profiler to ensure they deliver the best possible code to their customers.

Realistic Timing During Function Development (Applications)

For hard real-time applications, reliable and predictable timings of your functions are essential. Applying smart
profiling early during the development process of your software functions ensures that adverse surprises are not

Traditional Profiling Smart Profiling Relative Cost

For a typical powertrain project, an
expert-level engineer spends about 2
man months optimizing the linker layout
alone.

A non-expert can identify and resolve the
biggest issues in a few hours.

> 20:1

Existing tracing tools require expensive
hardware probes to get “all data” from
the hardware. The data needs extensive
post-processing and expert knowledge to
extract relevant information.

The profiler connects to the hardware using
a mini-wiggler (costing about 100 EUR) or a
simple USB-cable like the one used to charge
a phone. Only relevant data is extracted,
automatically post-processed, and interpreted.

> 10:1

Trial-and-error based search for
optimizations does not guarantee any
positive results; in the worst case,
weeks might be spent with no overall
improvement.

Smart profiling guarantees that the most
relevant problems are resolved first, and the
problem’s root cause is exposed so that time is
spent fixing the relevant problems rather than
guessing what the problem is.

> 2:1

Cost of debugger software for tracing. Smart profiler software is included. > 2:1

Table 1: Return on Investment (ROI) Details for the TASKING® Embedded Profiler

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

Copyright © 2019 TASKING BV

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or posted
on any network computer or broadcast in any media, and (2) no modifications of the document are made. Unauthorized duplication, in whole or part,
of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published reviews,
is prohibited without the express written permission of TASKING BV. Unauthorized duplication of this work may also be prohibited by local statute.
Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment.

Altium ®, TASKING ®, and their respective logos are registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered
trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

0219/CMOD/KC/PDF

An Altium Brand

hidden in the code and that the timings found during development are close to what you will see when deploying
the code.

Optimization (OS, Drivers, Libraries, Applications)

When developing new functionality, integrating existing functionality, or porting applications to new target
hardware, you are likely to introduce new hardware stalls unwittingly. Instead of hoping for the best and handing
your project to the firefighters when it becomes apparent that core utilization or timing behavior become
untenable, using smart profiling early puts you in control of your software performance. Deliver better code more
quickly and retain control of your code’s performance.

Regressions after Code Changes (All Code)

Even minor and seemingly innocent code changes have the potential to introduce several stalls and other
performance-degrading events. Make sure that you consciously change your code’s performance characteristics
and identify mistakes before any harm is done by running automated stall regressions before checking in the code
change.

Fire-Fighting Timing and Performance Issues

At a project’s end, you may find that that some of your end-to-end timings violate the project requirements or
some cores are overutilized. Changing the OS schedule to attempt a fix is highly risky because several side-effects
may skew the timing in other event chains. What you really need is to make one specific task or runnable execute
faster. If you haven’t yet used the profiler to investigate the specific task/runnable, then there is a good chance
you can reduce the runtime of the target task/runnable by 50 percent or more with smart profiling — all within an
hour. The TASKING Embedded Profiler can target the entire application or a set of specific, user-selected functions.

SUMMARY

The TASKING Embedded Profiler provides smart profiling for deeply embedded devices like the AURIX family
of microcontrollers. It gives you control of the hardware rather than treating it as a black box that can only be
demystified by large investments in experts, time, hardware, and software.

Register for a free evaluation today, and get started with the TASKING Embedded Profiler.

https://www.tasking.com/trial

