
TASKING EMBEDDED DEBUGGER
PRODUCT OVERVIEW

A Feature-Rich and Cost-Efficient Debug Solution
for Tricore/AURIX

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

2

TABLE OF CONTENTS

EMBEDDED DEBUGGER - HIGH-LEVEL OVERVIEW ...3

EMBEDDED DEBUGGER - FUNCTIONS AND FEATURES ..5

ECLIPSE based User Interface ..5

Target Device Access and Tool Interoperability ...6

C/C++ and Assembly Symbolic Debugging ...6

Fast Program Download into RAM and FLASH ...8

Multi-Core Debugging GUI ...8

Elaborate Run-Control with Multi-Core Start/Stop Synchronization8

Code Breakpoints and Data Watchpoints ...9

Autosar-OS Aware Debugging ...9

Basic Trace Support ..9

File System Virtualization ..10

Test and Debug Automation Using TASKING Script Debugger ..10

Single-Core Instruction Set Simulators ...10

PRODUCT SPECIFICATIONS ..10

SUMMARY ...11

REFERENCES ... 11

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

3

EMBEDDED DEBUGGER - HIGH-LEVEL OVERVIEW

TASKING has been providing debuggers for Infineon TriCore™ microcontrollers for over 20 years. Until recently
these debuggers were released as a component of the TASKING TriCore VX Toolset only, and were not available
as stand-alone tool. Many customers observed that this debugger provided all features to handle the majority
of their debug tasks and have asked to make it available as a stand-alone tool for their software developers
independent from the compiler toolset. This has led to the release of the TASKING Embedded Debugger which
offers streamlined single and multicore debugging for up to six TriCore cores, and debugging of auxiliary
controllers such as GTM/MCS, SCR, HSM and PCP.

The debugger is an ECLIPSE based stand-alone tool, or can be integrated as a plugin into existing Eclipse Mars
environments. All features that streamline the debug process are available such as loading a program to RAM
and/or FLASH memory, C/C++ and Assembly level symbolic debugging -- also of highly optimized binaries --, code
breakpoints and data watchpoints, concurrent debugging of all cores, run-control with multi-core start/stop
synchronization, Autosar-OS aware debugging, full symbolic access to all device control registers (SFRs), and more.
Developer productivity is further enhanced by out-of-the box board support, wizard-guided project setup and task
execution, extensive online help and user documentation, and responsive customer support.

The TASKING Embedded Debugger provides high-speed access to the target device via the JTAG or DAP protocol
using a low-cost probe, the Infineon DAP miniwiggler. Features that require expensive hardware probes such
as elaborate tracing and complex timing analysis are not supported. If no physical hardware is available the
debugger can connect to the instruction-set-simulators that are included in the package.

The embedded debugger is shown with the DAP miniwiggler and the TriCore target board

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

4

Communication between the debugger and probe is implemented through the Infineon Device Access Server
(DAS) protocol. This assures interoperability between the debugger and other tools that require device access
such as calibration tools, and offers remote access to the target device enabling developers to connect from their
office desk to a target device in the lab. This way, the device can also be time-shared among multiple developers.

Finish your projects faster, spend less, reduce schedule risk, and eliminate developer down time. Most of the
debugging time spent by developers is not with complex issues, but rather simple code verification. Rather than
purchase a few high-end debuggers that developers have to share, a better solution is fewer expensive debuggers
along with several streamlined debuggers that can analyze the majority of issues. Interrupting the developers
edit-compile-debug cycle to wait for a debugger license is not only inefficient, but developers usually develop a
“momentum” when coding...a string of contiguous thought about how to solve the problem. If this is interrupted,
it can take time to regain that train of thought. Enough TASKING Embedded Debuggers can be deployed to keep
coding efficient, maintain coding momentum, and stay within budget.

A debugger on every desk

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

5

EMBEDDED DEBUGGER - FUNCTIONS AND FEATURES

ECLIPSE based User Interface

The TASKING Embedded Debugger is integrated in the industry standard Eclipse IDE. By default the debugger
is installed in a stand-alone TASKING Eclipse environment, but can also be integrated as a plugin into customer
specific Eclipse Mars environments.

Eclipse offers software developers a standardized and familiar work environment that reduces the learning
curve of a new tool. All productivity features of Eclipse are fully exploited by the Embedded Debugger. TASKING
Embedded Debugger provides wizards to ease the often complex and tedious task of configuring the target
system. Out-of-the box board support is available for development boards from Infineon and several 3rd parties.
Elaborate user documentation including on-line context sensitive help and example projects are available to get
you going.

All data that is needed to efficiently debug a program — optionally executing on multiple cores — such as active
threads, program locations, stacks, value of variables and registers are shown simultaneously in multiple panes
which are updated once a thread halts execution. Default window layouts, called perspectives, are provided but
you also have great freedom to create layouts that cover your specific needs, which can be saved as an Eclipse
perspective for later reuse.

Debugger commands can be entered via the mouse or through keyboard shortcuts. Using shortcuts is usually
preferable as you can perform actions much faster. The debugger provides keyboard shortcuts for the most
common actions.

Configuration wizard showing values of device registers in symbolic format

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

6

Target Device Access and Tool Interoperability
The TASKING Embedded Debugger uses the on-chip debug features of the physical target, or connects to single
core instruction-set simulators which are described in a separate section.

The connection to the physical target device is made via the Infineon miniWiggler, a device provided by Infineon
to access the TriCore, AUDO Future, AUDO MAX, and AURIX™ devices, as well as upcoming microcontrollers. It
supports the Device Access Port DAP2 protocol which allows debug communication with higher transmission rates
than existing JTAG based communication channels.

The logical connection to the target is implemented through Infineon’s DAS protocol, which is a proven technology
broadly used by Infineon and their tool partners. DAS assures interoperability between the debugger and other
tools that require device assess such as calibration tools. Furthermore it offers remote access enabling developers
to connect from their office desk to a target device in the lab as shown in the figure below. This way, the device can
also be time-shared among multiple developers.

Remote multi-tool operation

C/C++ and Assembly Symbolic Debugging
Debugging can be done in C/C++ language, assembler, or in a mixture of both. High-level language can be
intermixed with disassembly in one window, or can be shown in separate windows. All variable types specific to
the high-level language can be displayed, modified, and used in expressions, including function calls. Addresses
can be symbolic, absolute, or line number based. Symbolic C/C++ debugging of highly optimized code is also
feasible.

https://www.infineon.com/cms/en/product/evaluation-boards/KIT_DAP_MINIWIGGLER_USB/productType.html?productType=db3a30442239c7bb0122e98986fb6df0#ispnTab1

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

7

The default debugger perspective (shown on page 2) provides access to the following symbolic information:

• The Debug pane provides access to the active cores, threads being executed, and their stack, and allows you
to jump to the code associated with a function and set breakpoints on function return addresses.

• The Variables pane allows you to inspect and modify local and global variables -- also variables that are
temporarily stored in one or multiple registers -- and set data breakpoints (aka watchpoints) on the memory
location that a variable is stored in.

• The Breakpoints pane lets you add, inspect, and modify code and data breakpoints.

• The Register pane lets you inspect and modify the registers of the target device. This includes address and
general purpose registers as well as device configuration registers also known as special function registers
(SFRs). Values that have changed since last update are highlighted. Symbolic access of device configuration
registers is supported and saves the developer from consulting the processors user’s guide to translate bit
patterns into something meaningful, which is error prone if done manually.

• The Source pane shows the current location within the high-level source code, provides quick inspection of
the content of variables, and allows you to set breakpoints on source lines.

• The Disassembly pane shows the disassembled memory image optionally intermixed with the source code.

• The Memory pane lets you inspect and modify the content of the target’s memory. The debugger can also
list the differences between the content of the downloaded program file and the current memory image,
providing you with the ability to e.g. detect self-modifying code.

• The Heap pane (not shown in default perspective) shows the content of the heap and lest you quickly debug
memory allocation issues.

Default debug perspective

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

8

Fast Program Download into RAM and FLASH

Program code and data can be downloaded into RAM and/or internal FLASH memory. The programming of the
FLASH is controlled by the debugger. Customers value the speed at which the FLASH is programmed and that
multiple files can be downloaded in one operation.

The downloaded code can be executed by any core, or combination of cores, on the device. Of course the code
must comply with the initialization requirements of the device.

Multi-Core Debugging GUI

Multicore debugging for up to six TriCore cores is supported. The figure below shows a window pane layout that
displays detailed information about one core/thread, and disassembly intermixed with source code of the other
cores/threads.

The Debug pane shows the stacks of all threads in the system. Once the user selects a thread or function within
a thread, all windows are automatically updated to show the state associated with that thread and the core on
which it executes. Combined with the multi-core start/stop features described in the next section you have ample
features to find and fix bugs caused by inter-core interactions.

Multi-Core perspective showing state of cores 0, 1 and 2

Elaborate Run-Control with Multi-Core Start/Stop Synchronization

Elaborate run-control features are available and include: reset & run, restart, resume, C/C++ as well as instruction-
level stepping, step into, step over, return from current function, and interrupt aware stepping, whereby the user
can specify whether a run-control command affects all cores or one specific core only.

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

9

The interrupt aware stepping feature is quite useful, allowing you to step through a thread, while interrupts are
processed in the background, without stepping into the interrupt handler.

Code Breakpoints and Data Watchpoints
Breakpoints and watchpoints are used to
halt the program at critical junctures of
program execution to allow the developer to
acquire knowledge about a program during
its execution. A code breakpoint halts the
program when an instruction is fetched
from a given address. A data breakpoint, or
watchpoint, halts the program if data is read
from and/or written to a specific memory
location. Data breakpoints allow you to easily
track the use and misuse of variables without
having to (single)step through the code. In
addition to code and data breakpoints the
TASKING Embedded Debugger also supports
breakpoints associated with elapsed time
expressed as clock ticks, CPU cycles, or
instructions executed.

The number of available on-chip break- and watchpoints depends on the resources of the device used. An
unlimited number of software breakpoints can be set in RAM. A condition can be linked to a break- or watchpoint
to halt the program only when the expression evaluates to true.

Breakpoint configuration dialog showing multitude of breakpoint types

Autosar-OS Aware Debugging
The TASKING Embedded Debugger has built-in support for real-time operating systems (RTOS) aware debugging,
and provides symbolic access to the operating system’s internal resources like the task list and message queues.
Support for OSEK / ISO 17356 compliant operating systems is available out-of-the-box and is setup for your
specific OS implementation via the OSEK Run Time Interface (ORTI).

The ORTI is a specification, which enables debuggers to become OS aware, without knowing the OS itself. Most
AUTOSAR/OSEK system builders are able to extract all necessary information of the OS component into a text file,
called “ORTI file”, which can be loaded by the debugger.

Basic Trace Support
The debugger has a separate window
that displays the most recently executed
C statements or machine instructions.
This feature uses the execution target
device’s trace buffer along with symbolic
information generated during compilation
and is supported by AURIX emulation
devices and most simulators. The trace
window is updated automatically each time
the target halts.

Instruction trace window showing the program’s execution

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

10

File System Virtualization

The file system simulation capability offers a means to easily move data from the board to the host system for
further analysis, enabling you to debug programs before the actual input and output devices are present.
This features uses functionality built into the TASKING C-library to redirect all file IO calls executed on the target to
the host system. The debugger can read input data from the keyboard or a file, or can send output to a window or
a file offering various ways to visualize the data.

Test and Debug Automation Using TASKING Script Debugger

Next to the Eclipse Debugger, also a command line debugger is included in the package. This Script Debugger
is not an interactive debugger but merely a tool to drive test automation. Regression testing and debugging
operations are sequenced via a user specified script written in an easy to lean yet powerful proprietary language.
All aforementioned features such as file system virtualization are supported by the Script Debugger.

Single-Core Instruction Set Simulators

Performance optimized single-core instruction set simulators are provided for all cores located on Infineon
TriCore, AUDO and AURIX devices encompassing: TriCore, Generic Timer Module (GTM/MCS), Standby controller
(SCR), Hardware Security Module (HSM) and Peripheral Co-Processor (PCP) cores.

The simulators allow you to debug your program prior to obtaining target hardware. In addition to executing
code, the simulators gather statistics and timing information about your code providing a basic means for hotspot
analysis & instruction usage and facilitating relative performance measurement between different versions of an
algorithm. The simulators also support trace functionality.

PRODUCT SPECIFICATIONS
Supported host systems:

• Windows 7 or higher

Supported TriCore Devices:

• TC11xx Family (TC1130, TC1164, TC1166, TC1167, TC1197)

• TC173x Family (TC1736)

• TC176x Family (TC1762, TC1766, TC1767)

• TC178x Family (TC1782, TC1784)

• TC179x Family (TC1791, TC1792, TC1793, TC1796, TC1797, TC1798)

• AURIX TC2xx Family (TC21X, TC22X, TC23X, TC26X, TC27X, TC29X)

• AURIX TC3xx Family

Supported Debug Probes and target Connectors:

• Infineon miniWiggler

• Automotive 20-pin JTAG on 10-pin DAP

Supported Single-core Instruction Set Simulators

• TriCore, GTM/MCS, SCR, HSM and PCP (all included in package)

TASKING EMBEDDED DEBUGGER PRODUCT OVERVIEW
A Feature-Rich and Cost-Efficient Debug Solution for Tricore/AURIX

11

SUMMARY

The TASKING Embedded Debugger is a cost-efficient, yet complete, solution for code verification in large
development teams. For the price of a single high-end debugger, with functionality that is only required for a small
percentage of the time, several streamlined debuggers can be purchased, enabling developers to identify logic
problems and correct coding errors early on.

REFERENCES

[1] DAS Device Access Server - available via www.infineon.com/DAS

[2] MCD Multi-Core Debug API - available via www.infineon.com/DAS

[3] DAP miniWiggler - available via www.infineon.com/DAS

