

TASKING SAFETY CHECKER OVERVIEW GUIDE

ADVANCING AUTOMOTIVE APPLICATION DEVELOPMENT

Safety-critical software functions required in a car are traditionally placed in separate, single-core Electronic Control
Unit (ECU). With this practice, it’s easy to ensure that different functions with potentially different functional safety
requirements and Automotive Safety Integrity Level (ASIL) are physically insulated and protected against interference
from each other.

Today, it is common to combine many of these single core ECUs into a few multi-core ECUs to save costs on wiring
and energy consumption. With this new process, functions with different safety requirements and ASIL levels
must coexist on the same ECU where no physical insulation is provided. ISO 26262 [5] requires that all software
components be developed to the highest ASIL level unless they are partitioned and freedom from interference
between the software partitions is established [6].

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

To avoid the high costs of moving all software components to the highest ASIL level, many software suppliers have
started to use software partitioning and Memory Protection Units (MPUs). The MPU is one of the methods supported
by the ISO 26262 [6] to establish freedom from interference for memory access and is the most commonly used
method today. However, incorrect usage of the MPU can lead to massive financial and legal risks due to critical
safety failures in the field. Specifically, the following pitfalls are usually encountered when using the MPU:

• MPUs are notoriously hard to configure correctly. Turning on the MPU often triggers lots of unacceptable
MPU access violations (traps) due to small coding and configuration mistakes.

• Debugging and correcting MPU configuration and coding mistakes “trap-by-trap” is time-consuming and
costly.

• Achieving high/full test coverage, especially for exceptional corner cases, is prohibitively expensive [3].

• Incorrect MPU configurations and coding mistakes triggering MPU traps are hard to eliminate completely by
testing and often create substantial costs when not detected until after delivery of your software “in the field”
[1,2].

• Late consideration of MPUs and time-intensive MPU testing delay the discovery of bugs, thus driving the
increase in development costs [1,4].

In the remainder of this overview guide, we will discuss the TASKING Safety Checker tool which was developed
specifically to mitigate the risks and problems outlined above. First, we will look at the key features of the TASKING
Safety Checker before we evaluate how you use the tool in a step-by-step walkthrough. Lastly, we will discuss how
the TASKING Safety Checker helps reduce the risk of releasing code which triggers MPU traps by up to 95% while
also saving 69% of your MPU related testing and bug fixing costs.

OVERVIEW OF THE TASKING SAFETY CHECKER

The TASKING Safety Checker is the only automated analysis tool that enables developers to reduce dramatically the
risk of MPU access violations generating in the field. The TASKING Safety Checker also significantly reduces the cost
of testing for MPU traps and fixing the offending code.

The tool statically analyzes the component’s source code for access violations that would trigger MPU traps as if the
code was executed with all possible inputs using an appropriately configured MPU. This differentiates the TASKING
Safety Checker from other static analysis tools, which do not analyze MPU access violations and other information
including reads from uninitialized memory and data overflows.

Notably, the TASKING Safety Checker does not require hardware, and without any running code. This allows for
fast and early detection of common coding mistakes with a quick run of the TASKING Safety Checker after a code
change. It also takes into account all possible executions of the provided source code, so that very high coverage,
including odd corner cases, is achieved without the cost of creating test cases. Furthermore, a detailed root cause
analysis for each identified memory access violation is displayed so that the cost of debugging MPU traps to find
and fix the offending code is removed.

Since the tool identifies memory access violations statically (e.g., without running the code), memory access rights
can be specified with a much higher granularity without adding any impact to run-time performance. Higher
granularity memory access rights allow for detection of more safety violations, (e.g., safety violations between
software components that are within the same safety class but should be shielded from each other regardless).

The TASKING Safety Checker can be easily integrated into your preferred development environment or continuous
integration framework. This will allow you to minimize the cost of coding mistakes in the day-to-day work of your developers
by providing instant feedback before such errors propagate through your code base and cause expensive knock on effects.

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

AN EXAMPLE WORKFLOW IN THE TASKING SAFETY CHECKER

In this section, an example application of the TASKING Safety Checker is presented.

1. Defining Safety Classes

First, the MPU memory access rights must be defined using the TASKING Safety Checker input format (e.g. within
the file “partitioning.saf”), which is given as a command line option when the tool is executed. By providing these
settings in an extra file, no source code changes are required to use the TASKING Safety Checker.

TIP

If the memory access rights information is already available in a structured format (e.g., from the architectural
documentation), the input file required by the TASKING Safety Checker can be easily generated from the
existing information using common, free tools like grep, sed and friends. Otherwise, the input format is a great
way to document safety requirements in a formal manner that can be verified.

The TASKING Safety Checker input format supports the C-preprocessor to increase readability. Hence, easy-to-read
macros are used to define the different safety classes as shown below:

//short cuts for access rights read, write, execute and none

#define R (__SAFETY_CLASS_ACCESS_RIGHTS_READ__) //read

#define W (__SAFETY_CLASS_ACCESS_RIGHTS_WRITE__) //write

#define X (__SAFETY_CLASS_ACCESS_RIGHTS_CALL__) //execute

#define N (0U) //none

//define different safety classes, e.g. ASIL levels

#define QM (0U)

#define ASIL_A (1U)

#define ASIL_B (2U)

#define ASIL_C (3U)

#define ASIL_D (4U)

In the next step, we define the access rights between the different safety classes.

EXPERT NOTE

Next to the common ASIL levels shown above (A-D), any additional safety classes can be defined to detect and
prohibit interference between different software components. For example, we could define safety classes
LEFT_DOOR (5U) and RIGHT_DOOR (6U) to restrict access between the two software components that
handle the left and right door respectively, although they may have the same ASIL level.

Typically, just the lower granularity access rights that protect only the different ASIL levels (A-D) from each
other are configured into the MPU since this is sufficient to fulfill the requirements from ISO 26262 and limits
the performance impact of using the MPU. Nevertheless, using such additional, high granularity memory
access rights with the TASKING Safety Checker allows more bugs to be caught early during development with
no performance penalty.

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

2. Defining Access Rights Between Different Safety Classes
Access rights are defined in an array of structs, where each entry has the format {Src, Dest, Rights}. By default, all safety classes

may only access themselves and no other classes. This ensures that no access rights are enabled by accident.

__SAFETY_CLASS_ACCESS_RIGHTS__

{

/* Src Dst Rights */

{ QM, QM, N }, /* Disallow access between QM and itself */

{ ASIL_D, ASIL_B, W }, /* An ASIL D function is allowed to write ASIL B data */

{ ASIL_A, ASIL_B, X }, /* An ASIL A function is allowed to execute an ASIL B function */

{ ASIL_C, ASIL_D, R }, /* An ASIL C function is allowed to read ASIL D data */

{ LEFT_DOOR, RIGHT_DOOR, R }, /* only read access allowed */

{ RIGHT_DOOR, LEFT_DOOR, R } /* only read access allowed */

};

For the last step, we need to define which functions and variables belong to the different safety classes.

3. Mapping Functions, Variables and Addresses into Safety Classes
Variables and functions that are either global or static can be mapped to different safety classes using an array of structs,

where each entry has the format {“filename.c”, “Regular Expression to match functions or global

variables”, Safety Class}, as shown in the example below.

__SAFETY_CLASS_SELECTIONS__

{

/* FileMask, NameMask, SafetyClass */

{ “file1.c”, “*”, ASIL_A }, //”*” is a regular expression

{ “file2.c”, “*”, ASIL_B }, //everything in “file2.c” is assigned to safety class ASIL_B

{ “file3.c”, “f3”, ASIL_C }, //”f3” in file3.c is assigned to safety class ASIL_C

{ “file3.c”, “y”, ASIL_C } //global variable “y” in module “file3.c” is assigned to safety

class ASIL_C

};

//safety areas allow to assign memory areas to safety class, e.g. to protect SFRs from

unintended access

__SAFETY_CLASS_AREAS__

{

// StartAddress, Size, Class

{ 0x8004000, 0x200, ASIL_D }, //some SFRs

{ 0x8008000, 0x100, ASIL_D }

};

This step concludes the configuration of the TASKING Safety Checker. We can now move onto applying safety checker analysis

on our sources.

PLEASE NOTE:

Local variables inherit the safety class of the function they are declared in. Furthermore, note that all variables and

functions that are not explicitly mapped into a safety class are automatically mapped into safety class (0U) which

corresponds to QM in our example.

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

4. Applying Safety Checker Analysis on Sources
After specifying our memory access rights, the sources files can then be analyzed for MPU access right violations. As an

example, we examine the source files in the figure below:

Figure 1 - Examining Source Files for MPU Access Violations

Within these sources, the address of variable my_global is passed to function f2(). Within function f2(), the address of

my_global is stored in p and passed to function f3(). Within function f3() the address of my_global is stored in q and

dereferenced followed by a read action.

According to __SAFETY_CLASS_SELECTIONS__ (from 3.), f3() is in ASIL_C and my_global is in ASIL-A. __SAFETY_

CLASS_ACCESS_RIGHTS__ does not allow access from ASIL_C to ASIL-A, so the read from my_global via q in f3()

is illegal and would trigger an MPU trap, given a correctly configured MPU.

Instead of specifying a test case and tracing the MPU traps generated by the test through several potentially large and complex

source files, the TASKING Safety Checker outputs a root cause analysis for each identified memory access violation, as shown

in the next section.

5. Fixing MPU Memory Access Violations
Running the TASKING Safety Checker on the input data from the previous sections produces the results shown below. The

source of each safety violation can be easily identified using the root cause analysis output from the tool.

$ csaf file1.c file2.c file3.c partitioning.saf

csaf E498: [“file3.c” 5] safety violation reading “my_global” (class ASIL_A)

from “f3” (class 3)

csaf I899: [“file1.c” 6] the address of “my_global” is passed from

function “f1” as parameter #1 to function “f2”

csaf I898: [“file2.c” 5] parameter #1 containing the address of “my_global”

is passed from function “f2” as parameter #1 to function “f3”

csaf E499: [“file2.c” 5] safety violation calling “f3” (class ASIL_C)

from “f2” (class 2)

csaf E499: [“file1.c” 6] safety violation calling “f2” (class ASIL_B)

from “f1” (class 1)

3 errors, 0 warnings

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

With the access violation descriptions provided by the TASKING Safety Checker, the problems can be understood quickly

and a fix can be planned and implemented within minutes. Once fixed, a quick, second run of the tool can be used to verify

the solution. When running the TASKING Safety Checker from within the IDE, the developer can simply click on each output

message to directly jump to the offending source location.

COMPARING DEVELOPMENT COSTS AND ROI

In Table 1, we compare the different steps required when handling MPU traps with and without the TASKING Safety Checker.

The third column shows the relative costs of each activity when performed with and without the TASKING Safety Checker.

Also, an approximation of the cost reduction of MPU related test and bug fixing costs achieved for each step by using the

TASKING Safety Checker is given. We assume conservatively that 40% of overall MPU related development costs goes into test

specification, 40% into test execution, 15% into code reviews and 5% into bug fixing. Furthermore, we assume that the cost

ratio of fixing bugs during development, during testing, and in the field is 1:10:100 [3]:

HANDLING OF MPU TRAPS WITHOUT
TASKING SAFETY CHECKER

HANDLING OF MPU TRAPS WITH
TASKING SAFETY CHECKER

RELATIVE COST ANALYSIS

Define Memory Access Rights
(Conceptual+MPU Settings)

Define Memory Access Rights
(Conceptual+MPU Settings)

1:1

Manual Code Review to Catch
Common Coding Errors

Automatic, Full Coverage of Common
Coding Errors

100:1 Reduction of Engineering Time/
Cost for this Task = Cost Reduction of
ca. 15%

Create Test Cases (including Special
Conditions for High Coverage)

Reduced Testing Effort Due to Automatic
High Code Coverage (including special
conditions) of the Analysis

3:1 = Cost Reduction of ca. 13% [3]
Due to Reduced Test Spec Effort

Run Many Tests, too Expensive to Run
After Every Code Change, Slow Turn
Around Time and High Fix Costs

Run Analysis After Every Code Change
for Quick Turn Around Time and Early/
Cost Effective Fixes

10:1 [1] = Cost Reduction of ca. 36%
[3] Due to Early Bug Detection

Trace MPU Access Violations to Origin
to Understand Cause

Read Cause from Analysis Result 20:1 Reduction of Engineering Time/
Cost for this Task (Assuming it Takes
20 Mins to Debug/Trace the Cause
of an MPU Access Violation) = Cost
Reduction of ca. 5%

Fix Code Fix Code 1:1

Fix Access Violations from Common
Coding Errors Missed by Manual
Review and Tests

Automatic, Full Coverage of Common
Coding Errors Which were Identified by a
Major Automotive Software Supplier and
TASKING Safety Checker Early Adaptor
to Cause ca. 95% of MPU Traps

100:1 [1] = Cost Reduction of 14% *
(Ratio of MPU vs Non-MPU recall bugs)
of Recall Costs [2] (Reduce Risk of
Releasing MPU Traps into the Field by
ca. 95%)

Table 1 - Comparison of Different Steps and Costs Associated with Handling MPU traps with and without the TASKING Safety Checker.

http://tasking.com/

TASKING SAFETY CHECKER OVERVIEW GUIDE

USAGE SCENARIOS WITH THE TASKING SAFETY CHECKER

The TASKING Safety Checker can be used as a stand-alone tool which accepts any ANSI C / ISO C / C90 / C99 compliant

source files, irrespective of whether the source code is compiled with or without a TASKING compiler. Also, the TASKING Safety

Checker can be configured to handle many non-standard C extensions. It is easy to set up and performs a complete memory

access violation analysis on the given sources using an easy-to-create, text-based access rights table as the input (see the

workflow section above for an example).

Alternatively, the TASKING Safety Checker can be obtained as an optional upgrade for supported TASKING Toolsets (e.g.,

TASKING 6.0r1 TriCore Toolset). When integrated with a TASKING toolset, the TASKING Safety Checker requires no additional

configuration for non-standard C extensions. The description of the memory access rights is given as part of the TASKING

linker layout language (lsl script), thus providing a single, integrated definition language to handle all memory and layout

related issues.

The integrated version of the tool is the preferred option for customers that are already using TASKING toolsets and are

familiar with the TASKING linker layout language. Customers that use TASKING Safety Checker with non-TASKING Toolsets

and compilers are bound to the standalone version.

SOFTWARE INTEGRATORS

The TASKING Safety Checker can be optionally used to create partial analysis results at the site of software suppliers using

a system integrator defined memory access rights configuration. This allows the supplier to verify that his code does not

violate the safety constraints given by the system integrator. Furthermore, these partial results can be combined by the system

integrator to obtain a full memory access violation result for the entire integrated system. This allows you to easily and quickly

pinpoint memory access violations created by combining the different software components from the different suppliers.

http://tasking.com/

ABOUT ALTIUM

Altium LLC (ASX: ALU) is a multinational software corporation headquartered in San Diego, California, that focuses on electronics design systems
for 3D PCB design and embedded system development. Altium products are found everywhere from world leading electronic design teams to the
grassroots electronic design community.

With a unique range of technologies Altium helps organisations and design communities to innovate, collaborate and create connected products
while remaining on-time and on-budget. Products provided are Altium Designer®, Altium Vault®, CircuitStudio®, PCBWorks®, CircuitMaker®,
Octopart®, Ciiva® and the TASKING® range of embedded software compilers.

Founded in 1985, Altium has offices worldwide, with US locations in San Diego, Boston and New York City, European locations in Karlsruhe, Amersfoort,
Kiev and Zug and Asia-Pacific locations in Shanghai, Tokyo and Sydney. For more information, visit www.altium.com. You can also follow and engage
with Altium via Facebook, Twitter and YouTube.

TASKING SAFETY CHECKER OVERVIEW GUIDE

SUMMARY

We have demonstrated in this overview guide how the application of TASKING Safety Checker by your developers early on

during the development of your application code will reduce your MPU related test and bug fixing costs by 69% (sum of all

savings in Table 1 up to “Fix Code”). Also, reducing the risk of delivering embarrassing, safety critical errors to your customers

by up to 95% (last row in Table 1).

The TASKING Safety Checker is easy to integrate into any existing development environment, and allows your developers to

quickly analyze and resolve errors at the time of development. This tool is indispensable for any developer working on code

that may trigger an MPU, and it provides an automated and cost-effective solution to identify memory access right violations

for a variety of common safety standards including ISO 26262-6 6.4.14, IEC 61508-3 7.4.2.8 and SIRF 400 Chapter 5.

Get started with the TASKING Safety Checker today by registering for a free evaluation.

BIBLIOGRAPHY

[1] Boehm, B. W. Understanding and controlling software costs. Journal of Parametrics 8, 32–68 (1988).

[2] http://www.popsci.com/software-rising-cause-car-recalls

[3] Software debugging, testing and verification by Hailpern and Santhanam, 2002 (http://www.cs.uleth.

ca/~benkoczi/3720/pres/debug-test-verify_hailpern02.pdf)

[4] Tassey, G. The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and

Technology, RTI Project 7007, (2002).

[5] ISO26262-6 Section 6.4.14, http://www.iso.org/iso/catalogue_detail?csnumber=51362

[6] ISO26262-6 Appendix D, http://www.iso.org/iso/catalogue_detail?csnumber=51362

http://tasking.com/
http://www.asx.com.au/asx/research/company.do#!/ALU
http://www.altium.com/
https://www.facebook.com/Altium-106726426049146/
https://twitter.com/altium
https://www.youtube.com/user/AltiumOfficial
http://tasking.com/trial
http://www.popsci.com/software-rising-cause-car-recalls

