
APPLICATION NOTE

WINDOWS
DOCKER IMAGE

www.tasking.com

WINDOWS DOCKER IMAGE

INTRODUCTION

In this Application Note, we will explain how to Build and run Windows Docker Image for a TASKING product on Local Disk
and Remote Repository. We will take the product “TASKING VX-toolset for TriCore v6.3r1” with a floating license, hosted via
Remote TASKING License Server, as an example. Node-locked licenses are not recommended to be used for a Docker image.

WHAT IS A DOCKER IMAGE?

A Docker image is a read-only template that contains a set of instructions for creating a container that can run on a Docker
platform. It provides a convenient way to package up applications and preconfigured server environments, which you can
use for your own private use or share publicly with other Docker users. For more information about Docker, please refer to
https://www.docker.com.

CREATE TASKING DOCKER IMAGE ON LOCAL DISK

Setting Up Docker Desktop application

1.	 Download the latest Dockers Desktop App and install it from:
https://www.docker.com/products/docker-desktop

	 For this Application Note Docker Desktop 4.28.0 will be used.

2.	 Launch the Docker Desktop app. Once Docker Engine had started successful
it will look like this (Docker Icon turn to Green):

APPLICATION
NOTE

www.tasking.com

3.	 Make sure to “Switch to Window Containers…” via right clicking on the Docker icon present in
“Show Hidden Icons” from Windows task bar:

	 If you are creating an image for Linux OS leave it to Linux Container (this is the default).

Prepare Docker file

For this App Note, let’s assume that TASKING VX-toolset TriCore v6.3r1 is placed at the following installation directory:

C:\Program Files\TASKING\TriCore v6.3r1

	 1.	� Create a new text file(.txt) file at the installation directory of v6.3r1.
For now, we will refer this .txt file as “Dockerfile.txt”.

	 2.	�� Place the following text in Dockerfile:

FROM mcr.microsoft.com/windows/servercore:ltsc2019

RUN echo „Making a New Directory Called Tricore“

RUN mkdir Tricore

RUN echo „Now Adding Folders“

ADD . /Tricore

Setting the Required Environment Variable

ENV TSK_OPTIONS_FILE_SW160800v6_3r1 "C:/Tricore/etc/licopt.txt"

Sets a command that will run forever to keep container running

CMD ["powershell", "While(1) {}"]

	 3.	 Save and Dockerfile.txt and close it.

	 4.	� Rename the Dockerfile.txt to Dockerfile
(Remove the extension .txt as the Docker engine does not accept the .txt extension)

Please note that if you are using another version of Tricore VX toolset e.g. v6.2r2 or lower, please adopt the above highlighted
environmental variable (TSK_OPTIONS_FILE_SW160800v6_3r1) accordingly.

APPLICATION
NOTE

www.tasking.com

Creating Docker Image Locally

	 1.	 Open the Command Prompt(cmd.exe) at Tricore Installation Directory and write the following command:

docker build -t tricore .

		 i.e.

	 2.	� This will in return create an image named as “tricore” with the tag “latest” (default)

like (as indiceted in the screenshot below):

APPLICATION
NOTE

www.tasking.com

Running the Docker Container

	 1.	� Click on the “Run” button (as indicated above at   ) in-order to run the image. This will open a pop-up window
as shown below, click on “Run” (as indicated at   )

	
	 2.	� Once the Docker image is running, click on the Execute (as indicated below at   ) and

open the command line interface via clicking at Open in external terminal (as indicated below at   )

	 3.	� Once the command line interface is open, change the working directory to
\Tricore\ctc\bin and run the “ctc -V” command as indicated below:

	� Remark: During the preparation of Dockerfile, we had introduced a layer to create a new folder named “Tricore”
in the Docker container (RUN mkdir Tricore). After that we have copied (ADD . /Tricore) the full content of
the root installation folder (C:\Program Files\TASKING\TriCore v6.3r1) to this newly created folder Tricore
(C:\Tricore).

	 4.	� This will show the current version number of Tricore being used in the Docker image which proofs that

the Tricore image has been created successfully.

APPLICATION
NOTE

www.tasking.com

CREATE A TASKING DOCKER IMAGE FOR DOCKER HUB REPOSITORIES

Building an Image for Docker Repositories

		 1.	� In order to push an image to docker repository on Docker Hub, first sign up for the Docker Hub community and
login at Docker Desktop App with your respective credentials. Create a repository in Docker Hub. In this App
Note we are going to refer username as taskingdocker and repository as tricore_2024. Once the repository has
been created, go to the local installation directory of TASKING VX-toolset TriCore v6.3r1. For this App Note we
consider that as:

C:\Program Files\TASKING\TriCore v6.3r1

		 2.	� Add the Docker file as mentioned in previous Chapter (please refer to Prepare Docker file).
Open the command prompt(cmd.exe) here and use the following command to build an image for repository.

docker build -t [username]/[repository_name]:image_tag .

			 like:

			 docker build -t taskingdocker/tricore_2024:tricore .

Pushing an Image to Docker Repositories

		 1.	� Once the image had been successfully built for the repository, it can be pushed to repository
with the following command

docker push [username]/[repository_name]:tagname

			 like:

			 docker push taskingdocker/tricore_2024:tricore

APPLICATION
NOTE

https://hub.docker.com/

www.tasking.com

Pulling an Image from Docker Repositories

		 1.	� Once the image had been successfully pushed in the repository, it can be pulled from the repository
with the following command

docker pull [username]/[repository_name]:tagname

			 like:

			 docker pull taskingdocker/tricore_2024:tricore

		 You can also pull the image via using Docker Desktop App via following the steps below:

Note: This process also works for a local TLM server based floating license. Then the licopt.txt file will include an entry
for the local TLM server and this entry is also generic. So it can be used with multiple docker containers.

How to Compile Source Code within a Container in Docker Desktop App

Let say we have source file name file_1.c present on our host at location:

	 C:\Users\Username\Downloads\Docker_Data

	� which we want to compile within the Docker container. This can be achieved via mounting this
directory into the docker container. Docker run command offer “-v” or “—volume” option to mount
a directory from the Docker host into a container. This allows to share data between the host and
the container.

APPLICATION
NOTE

www.tasking.com

	� Once the Tricore Image has been created successfully, click on the “Run” (as indicated below at   )
within Docker Desktop.

	 This will pop-up a small options window as indicated below:

	
	 Click on the “Optional settings” drop-down menu, this will open

APPLICATION
NOTE

www.tasking.com

	 Fill in the respective entries indicated above. Description of each entry is as below:

	 Container Name	 �The container name in Docker is a user-assigned
identifier for a specific running container instance.

	 Host Path	� This is the path to a directory or file on the host system,
where your source files are located. It refers to a location
in the host's filesystem.

	 Container Path	� This is the path to a directory or file inside the container.
It refers to a location in the container's filesystem.

Note: Because the compiler generates output files, please select the host/container paths where you have read and write access.

	 In our use case the following settings are applied:

	 Container Name	 �Tasking_VX_Toolset_v6_3r1

	 Host Path	 C:\Users\Username\Downloads\Docker_Data

	 Container Path	� C:\Users\Tasking

	�

APPLICATION
NOTE

www.tasking.com

	� After setting the respective values click “Run”. Once the container is running,
launch the external terminal as shown below:

	� Once the external cmd.exe terminal is opened from within the container, switch to the Container path directory
which you had set earlier i.e. in this use case:

	 cd Users\Tasking

	� Call the dir command to see the list of files present in this directory. And then call the control program to compile
the source file file_1.c via :

	 C:\Tricore\ctc\bin\cctc file_1.c -t -v

	 After successful compilation execute the dir command to see the list of files.

	�
You will observe that the compiler generated output present in container filesystem, will be visible on your host
filesystem too.

APPLICATION
NOTE

www.tasking.com

How to Compile Source Code within a Container in Windows cmd.exe

If you do not want to use Docker Desktop App, you can use the Windows cmd.exe from your host PC too.
Launch two instances of cmd.exe

	 In the first 1st Instance of cmd.exe run the image i.e.:

	 docker run -v /host/directory:/container/directory image_name

	 Or in case of Docker hub image use this:

	 docker run -v /host/directory:/container/directory repository_name[:tag]

	 e.g.

	 docker images \\This will give a list of all images available

	� docker run -v "C:\Users\Username\Downloads\Docker_Data:C:\Users\Tasking"
taskingdocker/tricore_2024:tricore

	 In the 2nd instance of cmd.exe write this:

	 docker ps –a \\This will provide all the list of running container

	 docker exec -it cotainerID cmd \\\\ This will execute the container in interactive mode of container cmd.exe

	 e.g. :

	� Once you entered the above command, a command prompt (cmd.exe) window will be opened in the Docker
container. i.e.

	 Switch to the Container path directory which you had set earlier i.e. in this use case:

	 cd Users\Tasking

	� Call the dir command to see the list of files present in this directory. And then call the control program to compile
the source file file_1.c via:

	 C:\Tricore\ctc\bin\cctc file_1.c -t -v

APPLICATION
NOTE

www.tasking.com

	 After successful compilation execute the dir command to see the list of files.

	� You will observe that the compiler generated output present in container filesystem, will be visible in your host
filesystem too.

APPLICATION
NOTE

