
APPLICATION NOTE

CROSS-LINKING SMARTCODE AND
TRICORE VX V6.3R1 BINARIES

INTO A SINGLE ABSOLUTE
LOCATED FILE

INTRODUCTION

Cross-linking is an important tool in the embedded software engineer’s toolbox. Today’s embedded safety systems include
a myriad of performance, safety, and security requirements. These systems frequently rely on legacy binaries that have a
proven track record when it comes to safety and reliability.

The TASKING TriCore development tools provide the capability to easily integrate relocatable object files (suffix .o) from legacy
code built with older versions of the toolset.

The recently released SmartCode toolset which was designed to support the third generation of the AURIX™ microcontroller
(TC4x) accepts and links object files built with v6.3r1 of the TriCore VX-Toolset.

The following application note will show two simple examples of how to do this. Please refer to the following illustration for
a high-level view of the process.

WHAT IS CROSS-LINKING?

Cross-Linking is a feature of the TASKING TriCore toolset that allows you to re-use object files built with previous versions of
the toolset and link them into application code that is being developed with a newer version of the TriCore toolset. For this
application note, SmartCode v10.1r1 is newer than TriCore VX v6.3r1.

WHY IS SOFTWARE RE-USE IMPORTANT?

Critical software components with a proven safety record are often re-used due their history of operating in the field without
incident. The re-use of these legacy object files and binaries can save time and money since they have already undergone a
costly validation and verification procedure.

THIS APPLICATION NOTE WILL FOCUS ON CROSS-LINKING
SMARTCODE BINARIES AND TRICORE VX V6.3R1 BINARIES
INTO A SINGLE ABSOLUTE LOCATED FILE.

www.tasking.com

APPLICATION
NOTE

Figure 1: Overview of Cross-link build process

www.tasking.com

Other notable reasons for using legacy software components:

• S W architects with detailed information on the algorithm IP may no longer be with the company

• Source code may not be available for re-compilation

• OEM safety case may require usage of specific SW components

• Third-party validated safety compliant SW components like MCAL and/or

AUTOSAR specify compiler version and toolset options in their release notes.

WHY DO WE WANT TO USE THE NEWEST VERSION OF THE TOOLSET
FOR OUR APPLICATION DEVELOPMENT?

The evolution of compiler toolsets like TASKING’s SmartCode are continually introducing new features to increase the
performance, safety, and efficiency of your embedded applications.

Examples of how new toolset features can improve software development:

• New application features can benefit from performance gains and improvements

available with the latest compiler technology

• Latest compiler optimizations can improve performance and reduce footprint size

allowing your application to fit into a more cost-effective device

• The improved performance and reduced application footprint size can help achieve

any OEM specified overhead requirements.

WHY DO WE WANT TO CROSS-LINK?

Let us assume that the option to cross-link is not available. The developer of a new software component would
have the following options:

1. The version of the compiler used for building the software component would have to be used

for the rest of their software

2. All future software development with this component would be restricted to this version of the toolset

3. Any other applications wanting to use the software component would have to be ported to this version

of the toolset.

Clearly this is undesirable. Thankfully, this is not the case. Software developers using the TASKING TriCore toolsets who need
to use legacy object code built with previous versions of the TriCore toolset can cross-link with a newer version of the toolset.
This provides the developer the following advantages:

• Seamlessly adding legacy object file(s) to their current build

• Being able to use certified third-party software (I.e., MCAL) that was developed

with a previous toolset version.

• Commercial advantages -> avoid re-writing, porting, testing, or validating legacy object files

I think it is clear, why we want to cross-link, but should we? Is it safe? Why shouldn’t we fear linking object files from different
compiler versions? After all, calling conventions may have changed, data layouts may be different and who knows what other
surprises lurk in the dark recesses of a micro-controller’s memory map?

APPLICATION
NOTE

www.tasking.com

HOW DOES TASKING ENSURE THAT CROSS-LINKING IS SAFE?

All TriCore compiler versions adhere to the Infineon Embedded Application Binary Interface (EABI) specification. The EABI
is a set of interface standards that writers of compilers, assemblers and linker/locators must use when creating compliant
tools for the TriCore architecture. For example, characters must be stored on byte boundaries, short integers must be two-
byte aligned and any data types with a size of four bytes or larger must be four-byte aligned.

Prior to specifying that two compiler versions are suitable for cross-linking, TASKING methodically compares the relevant
aspects of the two compiler versions, such as data sizes and alignments, and tests the compatibility of the calling conventions.
An additional set of tests has been generated to cover all possible cases; passing these tests means that the two compiler
versions are cross-link compatible.

Note: The TriCore architecture has requirements related to the alignment of certain data types, structs and struct members.

The following points should be considered:

• Alignment restrictions of the TriCore architecture

• Alignment requirements of the Infineon EABI

• Alignment options provided by the C compiler

• Alignment options provided by the LSL linker script language

Note: For additional details on the Infineon EABI in relation to the TASKING toolset, please refer to the application note

“Alignment Requirements – Restrictions for the TriCore Architecture” located on the ‘resources’ tab of the TASKING website.

WHAT ISSUES CAN CAUSE CROSS LINKING ERRORS?

With the EABI, Infineon defines the calling conventions that are used; however, compiler vendors may offer alternative settings
to achieve a more compact data placement. For example, the TASKING TriCore toolset allows the user to change the section/
data alignment to increase data density and reduce unnecessary alignment gaps. In addition, TASKING has introduced some
compiler flags to enable or disable specific deviations from the standard EABI.

IMPORTANT: Please note, that some of the following cross-linking points no longer apply to SmartCode since it was
designed to always be EABI compliant. (I.e., SmartCode does not support the --eabi option to disable EABI compliance.)

However, these points are applicable, when trying to cross-link between two previous versions of the TriCore VX-toolset
(e.g, v5.0r2 and v6.2r2).

To ensure cross-linking is successful:

• Ensure all object files are compiled with the same settings for these flags.

• Ensure all objects use the same size for the double type

• Ensure alignment options also match.

APPLICATION
NOTE

www.tasking.com

Potential issues with cross linking:

• EABI Compliance deviations within TriCore VX Toolset

 - Main two EABI settings affecting cross-linking are half-word-align AND treat double as float

 - Base type alignment may be an issue with bit-field alignment.

Bit-field alignment issues can lead to errors when trying to access a register bit.

 - ISO C supports ‘0’ size bit-field. This can lead to errors with Base type alignment.

This topic is beyond the scope of this application note.

 - The –no-clear option violates the EABI. The specification declares that non-initialized global data

must be zero’ed in startup code (I.e.,data needs to be cleared before used). However, Applications

using battery backed RAM, need to know the content of RAM after a re-start. The –no-clear option

ensures that data in battery backed RAM is retained and not overwritten by the initialization.

 - Word aligned structures and unions larger than or equal to 64-bit can cause compatibility issues

with SmartCode. TASKING included for double word copy instructions (Not EABI compliant).

• Potential issues with cross-linking may arise when using the compiler options ‘--integer-enumeration’

(always uses 32-bit integers for enumeration) and ‘--signed-bitfields’.

Refer to Section 7.5 of the TASKING VX-toolset for TriCore v6.3r1 for more information.

CROSS-LINK A SIMPLE PROJECT BUILT IN TRICORE VX AND SMARTCODE

Create a simple TriCore project with a library cross-linked to SmartCode.

1. First step is to create a ‘hello world’ project in TriCore VX.

APPLICATION
NOTE

Figure 2: VX-Toolset for TriCore, New C/C++ Project dialog box

www.tasking.com

2. Choose an AURIX variant for the project. In this example, we use the TC39xB

3. Adjust the project properties to include the following:

• Adjust the Allocation >> Threshold for putting data in _near to 0

• Set generate symbolic information to ‘default’

• Generate ascii .map file

APPLICATION
NOTE

Figure 4: VX-Toolset for TriCore, New C/C++ Project Settings - memory allocation

Figure 3: VX-Toolset for TriCore, New C/C++ Project Micro-controller selection dialog box

www.tasking.com

4. Modify the Hello_TriCoreVXToolset_v63r1 as shown:

5. Create a new TASKING TriCore Library and select the AURIX family variant

APPLICATION
NOTE

Figure 6: VX-Toolset for TriCore, New Library and micro-controller dialog boxes

Figure 5: VX-Toolset for TriCore, Hello_TriCoreVXToolset_v63r1 code modification

www.tasking.com

6. Create ‘3’ new source files for the library. Right click on the library name in your workspace, select new, select source file.

The three new source files should be named libfunc1.c, libfunc2.c and libfunc3.c

7. Define the contents of the library source files as shown:

APPLICATION
NOTE

Figure 7: VX-Toolset for TriCore, New Library Source File dialog box

Figure 8: VX-Toolset for TriCore, New Library source code

www.tasking.com

8. Set your library to the active project and build. The console.log and screenshot of project workspace is shown.

APPLICATION
NOTE

Figure 9: VX-Toolset for TriCore, New Library workspace view and build results

www.tasking.com

9. Copy the janexlib.a, from the “janexlib >> debug folder” -> denoted by green to the “Hello_TriCoreVXToolset_v63r1

main project folder” denoted by light blue.

APPLICATION
NOTE

Figure 10: VX-Toolset for TriCore, New C/C++ Project and Library workspace view

www.tasking.com

10. In the project property settings, add the library, janexlib.a as shown:

11. Set Hello_TriCoreVXToolset_v63r1 project active, build and debug using the TriCore Simulator.

From the debugger, hit ‘restart’ and ‘resume’

12. Create a SmartCode project. Follow the same procedure as above except name the project

‘SmartCode_helloworld’ and choose the TC49x (This is currently the only TC4x option available).

APPLICATION
NOTE

Figure 11: VX-Toolset for TriCore, Add Library to Project dialog box

Figure 12: VX-Toolset for TriCore, Program output

www.tasking.com

13. Modify the SmartCode_helloworld.c as shown:

14. One option is to modify the TriCore Project since the TASKING Linker will not be able to create the SmartCode .elf file

with ‘2’ main functions defined. Modify the TriCore source file as shown.

APPLICATION
NOTE

Figure 14: VX-Toolset for TriCore code modification

Figure 13: SmartCode, New Project workspace view

www.tasking.com

15. Re-build the TriCore Project. The linker error is due to the lack of a defined main().

For cross-linking, copy ‘Hello_TriCoreVXToolset_v63r1.o’ and the janexlib.a to the SmartCode Project folder.

Don’t forget to add the janexlib.a library reference as shown in step 10.

16. Build the SmartCode Project. You will receive the following warnings since the TriCore project is based on the

TC39xB(TC1V1.6.2) and the SmartCode project is for the TC49x(TC1V1.8)

APPLICATION
NOTE

Figure 15: SmartCode project workspace view after VX-Toolset for TriCore „.o“ and Library „.a“ files are added

Figure 16: SmartCode Project Build Results

www.tasking.com

17. Run the SmartCode project with the simulator. (Hardware is not available)

You have successfully cross-linked a TriCore VX Toolset project with a library -AND- a SmartCode Project.

This project was very simple and didn’t introduce any of the potential stumbling blocks that will be shown in the next example.

DEMONSTRATE CHALLENGES WHEN CROSS-LINKING TRICORE VX AND SMARTCODE

When cross-linking TriCore VX v6.3r1 and SmartCode binaries, special attention needs to be paid with the following.

• Float Point Model: The TriCore TC1.6.x has an integrated Floating-Point Unit (FPU) that supports single

precision floating point operations. The TriCore VX toolset offers the compiler option ‘treat double as float’

which significantly improves performance if true double precision is not required. The SmartCode toolset

was developed to support the TC4x which has a double precision FPU. In this use-case, there is the possibility

to have a floating-point mismatch. (Double Precision -> 8bytes, Singe Precision -> 4bytes)

• Memory Alignment: The TriCore VX Toolset can specify the alignment of data types in memory. For example,

with the --eabi option, halfword memory alignment is possible. The SmartCode toolset had this feature re-

moved and certain data types are always EABI compliant (I.e, int’s are always full word aligned, no exceptions).

Note: With ‘Global Type Checking’ enabled, the toolset will give an error with any memory misalignments.

Please reference project 220223_cross_linking_example.

1. Copy the project file to a folder and unzip.

APPLICATION
NOTE

Figure 17: SmartCode and VX-Toolset for TriCore cross-linked program output

Figure 18: Cross-link example project 220223

www.tasking.com

2. Import the SmartCode Project. Select File >> Import.

(Enabling ‘copy projects into workspace’ will leave original project files untouched.)

3. In the TriCore Folder, rename gen.txt -> gen.bat

APPLICATION
NOTE

Figure 19: SmartCode, Import Project dialog boxes

Figure 20: VX-Toolset for TriCore, ‚.o‘ file directory view

www.tasking.com

APPLICATION
NOTE

The gen.bat file contains the command line invocation calls for the TriCore VX Toolset. This batch file will generate two
separate object files. The ‘file_2_compliant_settings.o’ is built with the correct EABI and floating-point double settings.
The ‘file_2_runtime_problems.o’ is built with ‘treat double as float’ and ‘half-word’ alignment as supported by

the TriCore Toolset.

• Open a command prompt (cmd/k) and set the path to include the TriCore VX Toolset v6.3r1 ctc\bin folder.

A simple batch file is shown below.

• From the command prompt, type cctc -help, to show the control program options.

--eabi = H -> Removes half-word align option.

--fp-model = F -> Removes treat double as a float.

Note: The TriCore EABI default is: bcfhnsw (The ‘f’ treats ‘double as a float’ -and- the ‘h’ allows half-word alignment.)

Figure 21: Command Line invocation for VX-Toolset for TriCore ‚.o‘ files

Figure 22: VX-Toolset for Tricore, batch file for setting path environment variable

Figure 23: VX-Toolset for
Tricore, build program ‚EABI‘
related options

www.tasking.com

APPLICATION
NOTE

• Run the batch file to generate updated object files

• Copy the ‘file_2_runtime_problems.o’ to the SmartCode project, build the project and launch

the debugger. Note the linker warning message regarding the different TriCore Versions in the

console window.

Figure 24: VX-Toolset for TriCore, build results generating new ‚.o‘ files

Figure 25: VX-Toolset for TriCore, project workspace view

www.tasking.com

Note: When you add an object file to an eclipse project folder, it is treated as an input file, not an intermediate file.

Eclipse adds to linker invocation. No need to do a refresh.

APPLICATION
NOTE

Figure 26: Cross-linked SmartCode and TriCore project shown in SmartCode debug perspective

www.tasking.com

NON-COMPLIANT PORTION OF THE EXAMPLE

The TriCore source file, file_2.c is shown below:

During the build process the TriCore toolset ignores the ‘double’ definition of dvar_1 in the c source and creates ‘float’.

(Based on command line settings)

• Looking at the TriCore code in Debugger (‘treat double as float’ enabled)

The Disassembly view shows ld.w and st.w (load and store word)

• Referring to the .map file,

dvar_1 is 4 bytes (Float), half-word aligned and located at address 0x9000 001c

APPLICATION
NOTE

www.tasking.com

The variable and memory windows are shown:

The debugger correctly displays dvar_1 as type float with a value of 7.8. The problem will be highlighted below when we print

out the variables.

file_1.c is built with SmartCode. (Treats ‘double’ as a ‘double’ and type int is word-aligned)

APPLICATION
NOTE

Figure 27: SmartCode, Debug Perspective showing global variables

www.tasking.com

• The Check_double() function uses a pointer to the variable &dvar_1 (defined in TriCore) allowing you

to ‘cast’ a double value to a float value.

- The function init_double_smartcode(), defines a constant value of 3.4 which is shown as ld.d and st.d

(load and store double) in the disassembly view. (8 bytes for the value 3.4)

 - The function init_double_tricore() was already discussed.

 - The printf() calls display: dvar_1, pointer to dvar_1 and dvar_2.

• The first printf call displays dvar1 with the ‘%e’ conversion character. Per the TASKING SmartCode user

manual, this represents ‘type double’.

APPLICATION
NOTE

Figure 28: SmartCode, printf data format options

www.tasking.com

From the disassembly view, notice printf() loads a double. [printf() gets 8bytes, but there are only 4 bytes of data!]

Let’s take a closer look at the math. As previously mentioned, the memory address of dvar_1 is 0x9000 001c.

qw

The hex integer value (32-bit) of 0x9000 001c = 40F9 999A

Converting this value to Float (32-bit) and Double (64-bit) ->

qw

APPLICATION
NOTE

Figure 29: SmartCode, Debug Perspective memory watch

Figure 30: Procedure for converting INT to FLOAT and DOUBLE

www.tasking.com

• The second printf() displays the contents of a pointer. With type casting we reference the address of a double

but show it as a float. Thus, the correct result.

• The third printf() shows the value in SmartCode which is always a double. Per the .map file, the address of

dvar_2 is 0x9000 0014.

qw

The hex integer value (64-bit) of 0x9000 0014 = 400B 3333 3333 3333

• The Check_struct_member() function shows how the struct member alignment affects the results:

Note: s_1 is built with SmartCode and s_2 is built with TriCore. The printf() formatter %x -> hex display data (refer to table in

user guide shown above)

APPLICATION
NOTE

Figure 32: Procedure for converting INT to DOUBLE

Figure 31: SmartCode, Debug Perspective memory watch

www.tasking.com

APPLICATION
NOTE

The TriCore initialized struct members:

The TriCore initialized struct members:

Per the .map file, s_1 is located at 0x9000 0000 and s_2 is located at 0x9000 0008

Looking at the memory location 0x9000 0000 and 0x9000 0008:

Figure 33: SmartCode, Debug Perspective memory watch

www.tasking.com

APPLICATION
NOTE

The output of check_struct_member():

• SmartCode Results -> ‘s_1’:

 - SmartCode is word aligned. Therefore, the char 0x55 takes 4 bytes of memory.

(1 byte for the 0x55 and 3 gap bytes).

 - The int takes an additional 4 bytes for the 78 56 34 12.

 - The size of operator yields a correct response of 8.

• SmartCode Results -> ‘s_2’:

 - Per the TriCore build, the struct s_2 is half-word aligned.

(memory is saved by reducing the number of alignment gap bytes).

 - The char c_1 starts on a word address. Since it is half-word aligned,

the character is followed with a 1-byte gap. The displayed 0xAA is still correct.

 - For the TriCore int, the expected value is 44 33 22 11. However, the value printed is 00 06 11 22.

· The int member can start on a half-word aligned address since this EABI violation has been

 enabled in the TriCore project.

· The 11 22 are shown, but the 33 44 are missing. Why? SmartCode is accessing data not part of

 the TriCore struct.

· Based on how the project was built, the TriCore struct is 6-bytes.

2-bytes for the char (char + 1 gap) and 4-bytes for the int.

· SmartCode is expecting 8-bytes, so it loads byte7 and byte8 as shown in the purple box.

 SmartCode includes the 44 and 33 as part of the gap as shown in the green box. Thus, 00 06 11 22

 · The TriCore sizeof operator reports the length of 6-bytes.

www.tasking.com

USE COMPLIANT VERSION

1. The SmartCode project will be re-built with ‘file_2_compliant_settings.o’, for reference, the following command line

innovation was used:

cctc file_2.c -t --core=tc1.6.2 -t -c -g -v --eabi=H --fp-model=F --global-type-checking

-o file_2_compliant_settings.o

--eabi = H -> Removes half-word align option

--fp-model = F -> Removes treat double as a float.

Please note in other use cases --EABI=W is needed to prevent word alignment of structs larger or equal

than 64 bit to be SmartCode compliant. The --EABI=B is needed when 0-size bit fields are used and the

struct in question is accessed by both TriCore v6.3r1 and SmartCode generated modules.

2. Delete ‘file_2_runtime_problems.o’ and replace with ‘file_2_compliant_settings.o’

APPLICATION
NOTE

Figure 34: SmartCode, Project Workspace view with new TriCore ‚.o‘ file

www.tasking.com

3. Build the new SmartCode project and launch the debugger

Zooming in on the disassembly view, notice the load and store double with the TriCore defined variable: dvar_1.

Zooming in on the disassembly view, notice the load and store double with the TriCore defined variable: dvar_1.

The following excerpt from the .map file shows the memory location for the key symbols

APPLICATION
NOTE

Figure 35: SmartCode, Debug Perspective with compliant version of Cross-linked program

Figure 36: SmartCode, Debug Perspective with compliant version of Cross-linked program, Disassembly view

www.tasking.com

The variable table shows the correct type and value for both dvar_1 and dvar_2.

The printf() shows the expected results. Please note that the pointer to a float value will show 0 since the value isn’t a float value

anymore but a double value. The variable table shows the correct type and value for both dvar_1 and dvar_2.

APPLICATION
NOTE

Figure 37: SmartCode, Debug Perspective variable view

www.tasking.com

APPLICATION
NOTE

The TriCore variables dvar_1 and s_2 are located at 0x9000 001c and 0x9000 0008 respectively.

• The red box shows the s_2.c_1 with correct size and number of gap bytes

• The violet box shows the correct 4 byte int

• The orange box shows the correct 8 bytes double 40 0B 33 33 33 33 33 33

SUMMARY

In summary, the TASKING TriCore toolset offers many competitive advantages including best-in-class code optimization

performance based on their proprietary in-house Viper technology. Additional advantages include advanced multicore

support, an integrated debugger, a highly configurable linker with versatile script language for optimal memory control,

integrated MISRA C and CERT C static analysis tools, and integration into the popular Eclipse™ platform (IDE).

One advantage that is frequently over-looked is the ability for newer TriCore toolset versions to cross-link legacy object

files built with older versions of the toolset. This is a powerful feature which allows the user to easily integrate older trusted

software components without the hassles of porting or re-validation.

When semiconductor vendors release new microcontroller’s (new family or new variant of an existing family) there is the

potential for differences between toolset versions with respect to memory layout. It is imperative that TASKING provide

a set of cross-link guidelines to ensure that these differences between toolset versions do not result in erroneous program

behavior.

With the introduction of SmartCode, the ‘--eabi’ option was removed, to guarantee that SmartCode generated code is

always EABI compliant with the exception of known EABI violations, reported on the TASKING issues portal.

When cross-linking SmartCode with previous versions of the TriCore toolset, users must take special care to ensure that

their legacy object files were not built with ‘treat double as a float’, half-word alignment, base type alignment for 0-size bit

field or word-struct-align toolset options. If these options were used, please re-compile the legacy software with the

compliant toolset options if data will be exchanged between the TriCore and SmartCode objects.

Figure 38: SmartCode, Debug Perspective memory view

