TASKING.

OPTIMIZING AT
APPLICATION SCOPE

bbb

OPTIMIZING YOUR CODE WITH TASKING

INTRODUCTION

Every programmer at some point during development would need to make changes to his or code to make it
more efficient, either to deliver faster speeds or to run on less resources. This is what we call code optimization.
While there are several ways to tackle code optimization, such as compressing, rearranging, and inlining, we'll be
focusing on the compiler built-in transformation techniques that can reduce your memory usage footprint.

While there are several built-in compiler optimization tools readily available to programmers, their potential
remains largely untapped. Either due to unfamiliarity or unawareness of these tools, engineers can be reluctant
risking deadlines to try untested techniques, especially if they're involved in developing safety-critical systems.

In this white paper we'll discuss a few easy to implement compiler optimization techniques found in the TASKING
toolsets. These techniques are available on different scope levels up to the application scope, including MIL-link-
ing, MIL-splitting, inlining, and code compaction, also known as reverse-inlining. While these code optimization
techniques can be applied to any software development application, the context into which we'll be presenting is
for safety-critical automotive systems.

THE OPTIMIZATION DILEMMA

Most programmers have been there, with the coding process in its final stages after several thousand lines of code
have already been written, but then there's the roadblock. The code you spent hours working on can't be used in
product because you've ran out of memory. Your first course of action is to start working on optimizations to reduce
your code footprint. The problem is, this journey can be filled with many unexpected obstacles, often requiring many
sub-phases that suck time out of your development schedule. While you could leverage existing compiler optimi-
zation tools, you've got safety critical systems to work with, and safety standard requirements to meet, such as ISO
26262. Can these basic compiler optimization tools meet those industry standard requirements?

The good news is that modern compilers can apply optimizations at all scope levels ranging from a single machine
instruction to expression, statement, basic block, function, module, and application scope. The wider the scope
range the more you can get out of the compiler’s built-in optimization. These optimization techniques tackle mem-
ory usage reduction by removing semantically equivalent code fragments, also known as duplicate code removal
or functional clone removal. These duplicates in the code can exist due several reasons, including:

* Copy and Paste Programming, which is a common practice of code reusability.

While this practice yields minimum efforts in terms of code modification it can also
produce inefficient code.

* Code generated by model-based design tools, which often make use of templates to
generate the code, and as a result can lead to similar blocks of code existing throughout
different application module’s source code.

* Fined-grained duplicates, due to different functions often containing small code blocks
with identical semantics, where the quality of the source code can deteriorate if these
functional clones are replaced by function calls.

* Compiler generated instruction sequences, which can result in similar instruction sets
being generated throughout the output file. An example would be the function’s prologue
and epilogue.

In these examples, notice that the first three refer to duplicates in the source code, whereas the last one refers

to the duplicates in the compiler generated machine code. The reduction in code size we can obtain from these
optimization techniques will depend on several factors, such as the amount of functional clones in your source code,
and the characteristics of the microcontroller instruction set architecture on which the code is executed.

www.tasking.com TASKI”G®

OPTIMIZING YOUR CODE WITH TASKING

COMPILER OPTIMIZATION TECHNIQUES

In most compilers using a traditional build flow, each C module is passed to the compiler. The compiler then
generates an assembly module which is subsequently translated by the assembler into a relocatable object file.
Then, the linker connects and locates all object files libraries and outputs an object or hex file.

The TASKING compiler includes a powerful toolset that supports additional build flows where multiple C modules are
processed simultaneously. The sections below will explain these TASKING build flows in greater detail, including MIL-
Linking, MIL-Splitting, Inlining, Code Compaction, and Linker Optimizations.

MIL-Linking

When the MIL-linking feature is enabled, multiple C modules are passed to the C compiler in a single execution. The
compiler frontend (FE) will translate each module into the compiler internal representation called MIL, which is an
abbreviation for Medium Level Intermediate Format.

Next, the frontend will link the MIL representation of all source modules and then optimize the merged MIL's and
perform inter-module optimizations. The optimized MIL representation is then passed to the compiler backend (BE)
which translates the MIL into assembly instructions and performs additional target-specific optimizations. Following
that, the compiler generates the assembly file, which will contain all the C module code and data. When linked with
the run-time library, the floating-point library and C library will still be required as shown in the figure below.

C file 2 .o Cfile N

C compiler (FE) C compiler (FE) oo C compiler (FE)

C compiler (MIL link + split)

i

assembler

object
libs

object
file

Figure 1: MIL-Link Build Flow

ad

o

The advantage of this process is that when all files of an application are passed to the compiler then all optimizations
can be applied at the application wide scope. This maximizes the opportunity to detect and remove duplicates from
the source code and the compiler generated instruction sequences.

There is a drawback to compiling all modules of an application simultaneously. If one C module is modified, then all
C modules have to be recompiled. This can significantly slow down the edit-compile-debug cycle. However, this can

be mitigated by dividing the modules into multiple sets and applying the “application wide optimization” on a scope
set as opposed to the whole application.

Caution is required when this build flow is applied in mixed critical systems. ISO 26262 specifies that freedom from
interference between software elements is required. This can be achieved by grouping the modules into sets where
each set contains modules with the same Automotive Security Integrity Level (ASIL) assigned. All modules of a set are
passed to the compiler in one execution. This results in one assembly/object module created per ASIL.

www.tasking.com TASKI”G®

OPTIMIZING YOUR CODE WITH TASKING

These object modules, in addition to libraries, are then passed to the linker which creates the final object or hex
file. In multi-core systems, code and/or data can be associated with a specific core. TASKING compilers are aware of
these core associations and will not create any inter-core interactions.

MIL-Splitting

When MIL-splitting is enabled, the C compiler will first link the application at the MIL level as described in the section
above. However, after rerunning the optimizations, the MIL code is not passed on to the backend. The frontend will
write an .ms file for each input file or library. This file type will have the same format as a .mil file.

Using this approach provides the advantage of making the tool translate only those parts of the application to a .src
file that have been modified. The MIL-splitting build process is faster and more efficient that than the MIL-linking
build process. However, the tradeoff to this speed and efficiency is code compaction optimization in the backend
operating on a module level rather than an application level. Similar to the MIL linking, it is required for the MIL-
splitting build process to link with normal libraries in order to build an ELF file as shown in the figure below.

The same guidelines should be taken into account that were described for MIL-linking when this MIL-splitting build
flow is used to create a mixed critical system.

C file 1 C file 2 cee Cfile N

C compiler (FE) C compiler (FE) oo C compiler (FE)

MIL libs I
C compiler (MIL link + split)

MIL split MIL split X X) MIL split MIL split
file 1 file 2 file N files

MIL file 1 MIL file 2 oo MIL file N

i
s
S

i

H

C compiler (BE) C compiler (BE) X XY C compiler (BE) C compiler (BE)

asm
source 1

asm oo asm
source 2 source N

asm
sources

assembler assembler (XX assembler assembler

el

object LXK object object object
file 2 file N files libs

Figure 2: MiL-split build flow

object
file 1

atuds
ati
afuds

Inlining

When inlining is enabled, the C compiler automatically inlines small functions in order to reduce execution time cycle
by replacing the function calls with a copy of the code. The C compiler then decides which functions will be inlined.
This process can be overruled with the two keywords inline (ISO-C)and _ noinline. With these inline directives
you can request the compiler to inline the specified function regardless of the compiler’s optimization strategy. If a
function with the keyword inline is not called at all then the compiler does not generate any code for it.

Inline functions should be defined in the same source module where you call the function, since the compiler only
inlines a function in the module that contains the function definition. When you need to call the inline function
from several source modules you must include the inline function definition in each module (e.g., using a header
file). When inlining is enabled along with MIL-linking or MIL-splitting, the compiler can inline functions from any
module that has been passed to the compiler. In general, inlining is considered as a speed optimization that
increases a memory footprint. However, if inlining is applied before code compaction then code compaction
results often increase.

www.tasking.com TASKI”G®

OPTIMIZING YOUR CODE WITH TASKING

Code Compaction

Code compaction works in an opposite way to inlining code optimization. This process takes chunks of source
code, as well as sequences of compiler generated machine instructions that occur more than once, and replaces
them by a function call that consists of the source code and sequences. The effect of this optimization technique is
opposite of that of inlining as it yields a smaller code size at expense of slower execution speeds.

The code size reduction that can be achieved depends on the number of functional clones in the source code as
well as on the characteristics of the processor’s instruction set architecture. The most influential characteristic is
the function call - return overhead, and therefore the shorter the instructions sequences, the smaller the function
call it replaces. Combining inlining followed by reverse inlining can be a great optimization method when you're
working with a resource constrained target or design.

When function inlining and code compaction are both implemented, the call structure of the source code will
significantly differ from the call structure of the binary code. In this scenario, the compiler generates additional
debug information to facilitate the debugger to reconstruct a C-level stack trace that corresponds with the
structure of the original source code, allowing for the symbolic debugger to remain available.

Linker Optimizations

This linker optimization tool tackles duplicates for removal and operates at the ELF (Executable and Linkable
Format) section scope, which corresponds to individual C-level functions and variables in TASKING toolsets.

If identical code/data sections are found in the object files then the sections are overlaid, and as a result the
duplicate sections are removed from the FLASH image. These linker optimizations do not take the section’s ASIL
level into account and are therefore not suited for use in mixed critical systems.

CONCLUSION

TASKING compiler toolsets offer a large variety of build flows and optimization strategies to reduce the memory
footprint of your application. Code size reducing optimization strategies can also have a positive effect on the
execution speed of your application. These toolsets are highly configurable and can be customized to your exact
application needs, enabling you to strike the perfect balance between build time speed and code optimization.
Requirements imposed by safety standards have also been taken into consideration when designing this toolset, and
advanced optimizations can be applied in safety critical software.

This technical paper was just a brief overview of some of the optimization capabilities in TASKING toolsets. Get
started with your TASKING toolset today by registering for a free trial.

www.tasking.com TASKI”G®

