
AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

The fl owchart reads from left to right. Boxes represent a function within the application, either system or user3.
The function name is printed within the box along with a single braced keyword that hints to its purpose. Red tags
represent the core it must run on. Dotted lines represent some form of synchronization, either by semaphores or
status bits. The next three sections provide a closer look. It’s still relatively high level before we start discussing the
actual implementation.

INTRODUCTION

In Spring 2012, Infi neon introduced the fi fth generation of TriCore™. This family line, called AURIX™, was the fi rst
to implement up to three 32-bit TriCore™ CPUs and aimed to meet the highest safety standards while signifi cantly
increasing performance at the same time1. Yet with great architecture comes increased complexity, and if you’re a
developer about to embark on an AURIX™-based project, then you need the right tools to get the job done. During
the same time period, TASKING® launched the next major release of the TriCore™ VX-toolset featuring a powerful
palette of language extensions specifi cally tailored to meet those needs2. Since then, the TASKING® VX-toolset has
matured into the product that we know today. Not just another compiler, but a future-proof developer platform
equipped for fast-paced development through its ACT (AURIX™ Confi guration Tool) driven technology.

This application note aims to address the majority of multi-core aspects that come into play while working on an
AURIX™-based project. Using a minimalistic homogeneous sample case, it will familiarize you with all of the
nitty-gritty details. Both novice users and professionals should fi nd this application note a comfortable read and,
in the end, have a well-formed understanding to which extent the architectural features of AURIX are supported
by the TASKING® VX-toolset for TriCore™ v6.0r1.

1. THE DESIGN
Pictured below is a fl owchart of the sample case that we’ll work on throughout this application note. Its design is
fi ctitious in as much that it doesn’t refl ect anything that might be considered practical. Like with any example, it’s
been toned down so as to not draw attention away from the play’s main characters.

Figure 1 - Example Flowchart of Functions in Embedded Application

1 ”highly integrated and performance optimized 32-bit microcontrollers for automotive and industrial applications”, Infi neon
2 TASKING® VX-toolset for TriCore™ v4.0r1 was released in April 2012
3 System code is code facilitated by the toolset, such as for example libraries and startup code. User code is functional code of
 the application under development.

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

1.2 SYNCHRONIZING STARTUP CODES (SYSTEM CODE)

The flowchart begins with the startup code4 for core tc0, which is the only AURIX™ TriCore™ core that runs after
a reset. The first thing it does is initialize the stack pointer and start cores tc1 and tc2, at which point these start
executing their respective startup codes as well. There are now three startup codes running in parallel which simul-
taneously start processing the system copy table, but only for variables that have been associated to their specific
core5. Consider the implications of this. Since the amount of variables associated to each core is not necessarily
evenly weighed, the startup codes will not finish at the same time. If the ‘winner’ immediately starts with its associated
application part then this poses a risk for variables that it shares with other cores. If these are initialized by one of
the other cores, then there’s a risk that they are not yet initialized and the application can potentially break. It
is for this reason that within the TASKING® TriCore™ multi-core environment the startup codes wait for each other
to finish via a system variable called _tcx_end_c_init. If you are evaluating toolsets, be sure to check how these
solve it. It is seemingly trivial but also crucial.

1.3 THE MAIN ENTRY POINT CONUNDRUM (SYSTEM/USER CODE)

Here’s a bit of a puzzle: if a single core application has one single program entry point called main, then how many
entry points does a multi-core application have? The answer is still one, for the simple reason that there can only
be one matching definition for any function declaration6. It is for this reason that after startup code synchronization,
all startup codes converge into main. This is the point where your brain might stall for a moment because it’s being
trapped into believing that multiple cores are about to do the same thing, which kind of defeats the purpose. Yet the
confusion is only momentary when realizing the AURIX™ architecture implements a core special function register that can
identify the currently executing core7. Using this feature, the main body can check by which core it is being executed and
diverge into tailored code paths defined for those specific cores. Since these can be considered core specific entry points
to main, they have been called core0_main, core1_main and core2_main, as observed in the flowchart above.

1.4 INCREMENTS, DECREMENTS AND STATES (USER CODE)

We’ve now reached the actual functional part of the program consisting of three tasks distributed across three cores.
Task core0_main keeps track of the overall state of the application. It is responsible for starting tasks core1_main
and core2_main, both of which have been assigned a simple calculous task. Both tasks walk along circular buffer
samples for an equal amount of iterations. However, where one adds a small value to each cell, the other does the
opposite using the same amount. While during calculous all cells essentially are in a state of flux, of one thing we
can be sure: on completion the aggregate amount added and subtracted to each cell is zero. To verify this, core0_
main prints the contents of the samples buffer when both tasks have signalled that they have completed their work.
Each task has its own private circular pointer to access the circular samples buffer. These are represented by pw1
and pw2. Note, however, that access is arbitrated via semaphore sembuf. In chapter 3, we’ll explain its significance.

2. THE IMPLEMENTATION

What follows next is the implementation of our AURIX™ TriCore™ multi-core design. We’ll walk through it step-by-step
and discuss relevant project settings, language extensions, intrinsics and what you need to do in terms of the Linker
Script Language. We’ll also discuss the necessity of certain constructs and their alternatives if they exist. Note that for
some items we’re just scratching the surface. Checkout the annotations if you want to dive into the deep.

4 “TASKING® VX-toolset for TriCore™ User Guide”, section 4.3, “The C Startup Code”
5 “TASKING® VX-toolset for TriCore™ User Guide”, section 16.4.3, “Copy tables”
6 ISO/IEC 9899:1999 5.1.2.2.1 Program startup specifies: The function called at program startup is named main.
7 We’ll discuss this furtherup.

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

2.1 PROJECT SETTINGS

When you start a new project, a wizard will guide you through three initial project settings that must be chosen.
These have been depicted below.

As always, one of the first things you do is assign a
project name. Next, you decide which processor type
to use, in this case TC27xC. The wizard will recognize
this is a multi-core processor and will ask you whether
you want to run it single core or multi-core. For obvious
reasons, we choose multi-core. The next dialog lists
all available execution environments for your application.
This can be the simulator, but it can also be a specifi c
development board.

The wizard will show you which ones are available
based on your selected processor type. Therefore,
in this case it is populated with Infineon TriBoard
TC27xC. Select it and click Finish.

Figure 2 - New Project Wizard Settings for AURIX™ TriCore™

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

The next step is to determine which specific cores need to be enabled. For this you need to go to the startup
confi guration settings dialog as depicted below.

Figure 3 - Enabling Specifi c Cores in Startup Confi guration Settings

In the snapshot, Start TC1 and Start TC2 have already been enabled, but by default they’re not. You might
wonder why, specifi cally because you chose a multi-core project while running the wizard. The wizard only added
the multiple startup codes to the project and enabled system multi-core LSL8 fi les rather than single core. It did not,

8 “TASKING® VX-toolset for TriCore™ User Guide”, chapter 13, “Linker Script Language”

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

however, automatically enable all TriCore™ cores, reason being that only the developer knows which ones are going
to be actually used. Keep this in mind for your fi rst multi-core application. If your application ever appears to be
running just one core, this should jog your memory to inspect your startup confi guration.

2.2 RUN-TIME CORE IDENTIFICATION

Here’s the main program already referred to in section 1.3. All startup codes converge into this area, before main
itself distributes the application across all available cores.

Crucial in this setup is the use of inline function whoami() which you see defi ned in header fi le mc.h. This function
makes use of intrinsic function __mfcr9 which retrieves the Core Identification Register10. Using the switch-
statement, the code can now self-check which core it is being executed by and follow its assigned code path.

2.3 SIGNALLING EVENTS

As mentioned in section 1.4, function core0_main keeps track of the overall state of the application.

Figure 4 - Using Inline Functions to Retrieve the Core Identifi cation Register

9 “TASKING® VX-toolset for TriCore™ User Guide”, section 1.11.5.6 “Register Handling”
10 “Infi neon TriCore™ TC1.6P & TC1.6E Core Architecture 32-bit Unifi ed Processor Core User Manual (Volume 1)”, chapter 13, “Core Register Table”

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

Variable events keeps track of the overall state of the application. The states are defi ned in header fi le mc.h.
Note that events is declared as __far volatile and has word alignment through the use of the __align
keyword. The use of __far assures a predictable section name11. The volatile keyword is familiar to most and
assures that the compiler performs explicit read and write operations. The __align12 keyword needs some
elaboration. Its reason becomes clear when briefl y returning to mc.h and noticing signals are sent through the
use of __swapmskw13. This intrinsic is particularly suitable for implementing bit semaphores within a word,
and maps to equally named assembly instruction swapmsk.w.14 It comes with the restriction that it must
be aligned to word boundaries. Therefore, you must override the TASKING® default half-word alignment for integers15.

Note how core0_main uses inline functions set_event and get_event to communicate with its neighbouring
cores. After having assigned pwc1 and pwc2 with the base address of samples, it signals the other cores to do their
calculous. It subsequently waits for them to fi nish and then prints the samples for inspection. Bear in mind that the
function defi nition for core0_main includes the __private016 keyword. This associates it to memory PSPR0, but
since this is RAM memory, a copy section needs to be added to the copy table, allowing the startup code to install it.
We’ll check this once we’ve built the application and review the project map fi le. We use this keyword for educational
purposes. Its application has nothing to do with the fact that the code for core0_main runs on tc0. That is merely
determined by the switch statement used in main and thus by you as a programmer. It’s essentially a keyword that
eff ects locating behavior similar to the way __at() does and with the same considerations that you can alternatively
use LSL to achieve the same thing17.

Figure 5 - Keeping Track of an Application’s State with Variable Events

11 The compiler uses a threshold --default-near-data to determine the default memory type of data. Since section names incorporate

 the memory type it complicates matters when wanting to locate certain variables to specifi c addresses or address ranges.
12 “TASKING® VX-toolset for TriCore™ User Guide”, section 1.1.4, “Changing the Alignment: __align()”
13 “TASKING® VX-toolset for TriCore™ User Guide”, section 1.11.5.8, “Miscellaneous intrinsic Functions”
14 “Infi neon TriCore™ TC1.6P & TC1.6E Instruction Set 32-bit Unifi ed Processor Core User Manual (Volume 2)”, section 1.1, “CPU Instructions”
15 Another solution would be to enable EABI compliancy through the use of the --eabi-compliant command line option.
16 “TASKING® VX-toolset for TriCore™ User Guide”, section 1.4.2, “Code Core Association”
17 Take a look at the tc_blink_aurix example included in the toolset. Like this application note, it’s a multi-core example and demonstrates

 the LSL alternative to code/data core association.

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

2.4 THE DOG RACE

Let’s take a look at cores tc1 and tc2 running core1_main and core2_main respectively.

Figure 6 - Cores tc1 and tc2 Running core1_main and core2_main

Initially, they don’t do much other than a self-check and waiting for
core0_main to give the green light. But as soon as that happens
they immediately start doing their dedicated calculous tasks.
While one iteratively adds a small fractional value (GAMMA) to
each cell, the other does the reverse for an equal amount of
iterations. Its eff ect is similar to a dog race whereby pwc1 and pwc2
are competing to finish first. But unlike dogs simultaneously
chasing an imaginative buck on a dusty track, pwc1 and pwc2
instead only have intermittent access to the samples buff er,
for it being arbitrated by the P() and V() synchronization
primitives 18. In terms of granularity, this is perhaps a little bulky
but the alternative would have been to have a semaphore for each
individual cell which, for an example, would be overdoing it a bit.

18 The P() and V() primitives were fi rst coined by Dutch computer scientist Edsger W. Dijkstra in his paper “Hierarchical Ordering of Sequential Processes”.

Note that the implementation of P() makes use of the
__cmpswapw intrinsic. Similar to __swapmskw, i t can be
used - and in this case is - to implement semaphores with the
added advantage that the conditional check of acquiring a
semaphore is built into the swapmsk.w instruction.

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

But why the arbitration, you may ask. The reason is that updating the cell along with the post-increment of either
pwc1 and pwc2 must be an atomic operation, but the generated assembly is not. Why then must it be atomic, your
next question might be. Because if it is not, it might cause interference when the pointers are at a close pace,
potentially leading to non-deterministic results. In chapter 3, we will see this proven at run-time when we purposely
drop the semaphores. We’ll then take a closer look at the assembly to see if it can be explained.

After their calculous, both core1_main and core2_main signal to core0_main that they’re done. At this point,
core0_main will wrap things up by printing the contents of the samples buffer. We’ll review those results in
chapter 3 as well.

2.6 LSL - CACHE COHERENCE

By default, the linker will try to locate code and data in cached memory. Generally, that’s a good thing, but not for
variables shared between cores. For these it’s important that all cores have a consistent representation of a
variable’s state. However, since AURIX™ TriCore™ cores all have their own private cache without a supporting
coherence mechanism19, you must make sure such critical variables are not being cached. This can be achieved in
two steps. First, decide in which memory you want them to be located, for example lmuram. Next, inspect the Eclipse
properties of this memory to fi nd out its memory mappings.

Figure 7 - Reviewing the Memory Properties for lmuram

19 https://en.wikipedia.org/wiki/Cache_coherence
20 “TASKING® VX-toolset for TriCore™ User Guide”, section 1.12, “Compiler Generated Sections”

Note that lmuram is mapped to a caching and non-caching area, the labels of which you need when locating your
critical variables. Next, fi nd out what section names have been assigned to variables events, sembuf and samples.
For this you need to familiarize yourself with the naming convention explained in the user manual20. It then follows
that each variable has a unique section name that starts with the type of data (in this case .bss for cleared far data)
followed by the name of the module that declares them (core0_main) and ends with the name of the variable.
Knowing your section names, you can proceed to locate them using the following section layout defi nition.

https://en.wikipedia.org/wiki/Cache_coherence

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

The key here is that the run-time address is set to mem:mpe:lmuram/not_cached, which assures that variables are
mapped into lmuram using its non-cached memory mapping21.

2.7 INSPECTING THE MAP FILE FOLLOWING A BUILD

You can now build your application and review the map fi le. Earlier, we briefl y touched on the fact that because
core0_main is associated to PSPR0 it implies that copy sections must be created automatically to allow the startup
code to install them. Copy sections are braced with[]pairs and have the same name as the section they aim to install.
The section names themselves honor the naming convention referred to in the previous section. So, in this case, you’ll
be looking for a section name .text.private0.core0_main.core0_main and a matching copy section [.text.
private0.core0_main.core0_main]. See if you can spot them.

Figure 8 - Locating Shared Variables in Non-Cached Memory

21 “TASKING® VX-toolset for TriCore™ User Guide”, section 16.8.2, “Creating and Locating Groups of Sections”

Figure 9 - Inspecting Map File for Correct Memory Mapping

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

The map fi le confi rms that core0_main is located in PSPR0 and that it has a rom copy residing in pfl ash0. Also, note
that shared critical sections have indeed been located in lmuram using its non-cached memory mapping.

3. EXECUTION

We’re all set to start testing the run-time behavior. For our testing we used the integrated TASKING® debugger and
the Infi neon AURIX™ Application Kit for TC27722. Let’s look at two circumstances. One with sembuf in place, and
the other without.

3.1 DETERMINISTIC BEHAVIOR

When semaphore sembuf is in place the run-time results are as follows.

These results are in line with what we predicted them to be; the aggregated addition of two tasks (cores) doing
opposite additions for an equal amount of operations must be zero. Since all cells with samples were initially
cleared, it means that afterwards they will still be cleared or fractionally zero.

3.2 NONDETERMINISTIC BEHAVIOR

Now look at what happens when commenting synchronization primitives P() and V() from your source code.

22 For your own testing we advise to use any of the offi cially supported AURIX™ TriBoards since this application kit is not yet supported.

Figure 10 - Run-Time Results for Semaphore sembuf

Figure 11 - Run-Time Results After Commenting Synchronization Primitives

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

APPLICATION
NOTE

Note that in this case all cells end up to be fractionally -0.625 which is an exact multiple of -10 times the value of
GAMMA listed in mc.h. Let’s try to explain this race condition by dissecting the assembly of the following two C statements:

(pwc1++) += GAMMA; / tc1 */

(pwc2++) -= GAMMA; / tc2 */

For the former, the assembly looks like this:

ld.da a6/a7,pwc1

ld.q d0,[a6/a7+c]0

.L66:

movh d1,#2048

.L67:

adds d0,d1

st.q [a6/a7+c]2,d0

.L68:

st.da pwc1,a6/a7

.L41:

For the latter, it looks like this:

ld.da a6/a7,pwc2

ld.q d0,[a6/a7+c]0

.L66:
movh d1,#2048

.L67:
subs d0,d1
st.q [a6/a7+c]2,d0

.L68:
st.da pwc2,a6/a7

.L41:

Now suppose both pwc1 and pwc2 point to address 0xb0000000. Let’s further suppose that tc1 has just loaded
pwc1 in a6/a7 and tc2 is about to do the same for pwc2, as indeed might be the circumstance if they start
concurrently. Then, you can draw up the following sequence:

Figure 12 - Results of tc1 and tc2 Loaded into pwc1 and pwc2

APPLICATION
NOTE

AURIX™ MULTI-CORE TRICORE™ PROGRAMMING ESSENTIALS

Note that on the far right you see the contents of address 0xb0000000, which is just one cell of the samples buffer.
Also, note that the value of 0.0625, written back by tc1, is immediately overwritten by -0.0625 of tc2. This behavior
will repeat itself for each sweep through the samples buffer. Thus, after 10 iterations it becomes -0.625 as you see
in the slides.

Some might say that this also is deterministic behavior since we can deduce what happens and why it happens.
However, it is nondeterministic nonetheless because the slightest change in relative speed between the cores
makes it go away, as we have also observed during our testing. So, conversely it can be dormant for a long time
before suddenly being triggered. It shows the necessity for semaphores for crucial non atomic operations.

CONCLUSION

In this application note, we showed the design steps that come into play when developing an AURIX™ multi-core
TriCore™ application. We observed how the New Project wizard assists in making your best initial project settings,
only leaving a few tweaks to do for yourself. We pondered some of the philosophical aspects, such as why TASKING®
implements synchronizing startup codes. Or why a single main entry point still applies, even when having multiple
cores running in parallel. We implemented a small multi-core design and in doing so had to deal with synchronization
and arbitration. For this we used intrinsics and language extensions specifically tailored for the AURIX™ architecture.
We subsequently used the integrated debugger to debug the application running on all cores, and investigated the
consequences of using and not using semaphores.

In summary, we hope that it has been educational and that this multi-core essentials application note has given you
a first glance into the challenging and sometimes complex world of multi-core development.

