

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

A COMPLETE DEVELOPMENT SOLUTION

The TASKING® VX-toolset for TriCore™ (Release v6.3) is a complete solution for code development for AURIX™
multi-core hardware from Infineon®. The VX-toolset produces fast and compact code, not just for the TriCore, but
the other cores within AURIX™, including the GTM, SCR, HSM, and SCR. This best-in-class compiler performance
coupled with a decades-long industry track record at both large and small enterprises, plus ASPICE Level 2
certification provide the assurance you need for your development projects.

Here is a summary of TASKING VX-toolset for TriCore features. More detailed discussions of these features follow
this introduction.

• Great performance for both manually written and model based/auto generated code
• Multi-core optimization with universal linker support for all cores plus language extensions
• Profiling and debugging (both hardware and software)
• Safety - Safety Kit - MISRA - ASPICE Level 2 certified
• Premium support for current and old versions available
• Easy to get started and begin benchmarking with pin configurator
• Very broad support for MCAL and industry standard RTOSs
• Compatible with relevant third party timing analysis tools

EASY TO DEPLOY, EASY TO USE

The TASKING VX-toolset uses the industry’s favorite Eclipse™ integrated development environment (IDE) that
allows users to instantly begin working in a familiar environment. Eclipse ties all the tools together and makes
them full power accessible with ease. Eclipse also makes it easy to integrate the VX-toolset into custom-built
systems. For customers who already use TASKING compilers, cross-linking allows you safely combine different
TASKING compiler and linker versions in your project. For example, You want to compile your application with
the latest TASKING compiler version but you are forced to use an older version because MCAL is not tested with
this version.You could use crosslinking to link the MCAL and Application code which are compiled with different
TASKING compiler versions and reduce software requalification costs. Whitepapers, webinars, and forums provide
further education and learning opportunities to ensure effective and efficient use of TASKING tools.

PICK THE BUNDLE TO MATCH YOUR NEEDS

You can choose the best fit for your application development activities from four bundles: Standard, Professional,
Premium and Enterprise Editions. Along with the standard Eclipse, C/C++ compiler toolset and simulator modules,
additional functionality includes options such as C compilers for the HSM, GTM, SCR and PCP cores, on-hardware
debugging through an OCDS solution and a USB-to-JTAG wiggler.

MULTI-CORE SUPPORT

The VX-toolset provides two advanced methods for multi-core program development for the AURIX™
microcontroller, which includes:

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

• Compile time core association: Crosscore access is detected by the compiler in an early stage. This allows
for the best control of code and data destination on the various cores. Stricter coding discipline is asked from
the developer, resulting in better quality control while delivering optimal program execution.

• Link time core association: The destination core is selected in the final step, delivering ultimate
programming flexibility and allowing for straightforward reusability of existing code.

For ultimate flexibility and program execution, both methods can be used together.

The linker also supports references between TriCore core memories and GTM/MCS memories, and between
TriCore core memories and SCR memory. The GTM/MCS memories (RAM) and the SCR memory (RAM) can be
initialized automatically by the TriCore start-up code from the TASKING run-time library.

CROSS-LINKING

Cross-linking allows linking of object code built with an earlier toolset release into a project that is being
developed with a more recent toolset release. With releases v6.2r2 and v6.3r1 of the toolset, TASKING guarantees
compatibility of code developed with versions v4.2r2 and v5.0r2 of the product, under specific conditions. Through
this guarantee the user can re-use application code or use third party code developed and validated with an older
compiler release. This will give the user more flexibility and more products to choose from, like MCAL libraries,
Real-Time Operating Systems and communication stacks from parties like Infineon Technologies, ETAS, Elektrobit,
and Vector.

C COMPILERS

Using the latest compiler technologies from TASKING, all VX-toolset C compilers are reliable, compliant, best-in-
class, complete, compatible and easy to use to generate the most optimal code. The TASKING VX-compilers are
tested for ISO C99/C11 and ISO C++ conformity against authoritative validation suites, such as Perennial® and
Plum Hall®. In addition, the optimization techniques of the compilers are tested with large real-world applications
(for example, powertrain and body control sources), as well as industry benchmark standards such as Nullstone
and EEMBC.

Compiler Checklist

TASKING Competition

TriCore C compiler

GTM C compiler Some

HSM C compiler Some

SCR C compiler

Eclipse-based debugger

AURIXTM Pin Mapper and Conflicts Solver

Best-in-class for code size and speed

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

TRICORE C++ COMPILER

The VX-toolset Includes a C++ compiler for
TriCore core programming. The compiler
supports all language extensions up to
the C++11 standard. Full C++11 libraries
are provided as well. With Viper compiler
technology, the TASKING VX-toolset for
TriCore generates code with the smallest
footprint and fastest execution. Depending
on the specific requirements of your
TriCore application, optimizations can be
further tweaked for smaller code sizes or
higher execution speeds.

Compiler optimizations include:
• Partial Redundancy Elimination (PRE)

detects and eliminates repeating (sub-)
expressions.

• Various Loop and Jump optimizations
speed up execution and reduce code size.

• Control-flow and code-reduction
optimizations remove dead code and perform transformations to minimize jumps.

• Function inlining replaces calls to small functions with inlined copies of the function code.
• Peephole optimizations replace instruction sequences with equivalent but faster and/or shorter sequences, or

remove obsolete instructions.
• Inter-procedural register allocation
• Application wide code compaction (also called reverse inlining)
• Application wide speed optimizations by “MIL linking”

Syntax and Semantic Checks

The compiler offers a vast array of syntax and semantic checks that warn about potential undesirable effects or
bugs in your program. Early fixing of source code problems when reported by the compiler generally only takes
minutes compared to hours, or days, when the problem is discovered at run time.

Examples of compile-time checks include:
• Validating printf and scanf format strings against the type of the actual arguments
• Detection of reads from uninitialized memory locations
• Detecting unused variables
• “Value tracking”, which is used to detect errors such as:
 – Array subscript out of bounds
 – Constant conditions

Figure 1: The compiler is easy to set up and use for
the entire TriCore family.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

Runtime Error Checking

The runtime error checking capabilities in the compiler can reveal runtime errors when they first occur. The
kind of errors found by runtime error checking are typically hard to find since they manifest themselves through
secondary effects or, in the worst case, will not manifest at all prior to your product being shipped. By identifying
the source line where the error first occurs, the runtime error checking facilities reduce the time spent in the
debugger and increase the quality of your software. You can specify whether the application will terminate or
continue when an error is detected.

These optional checks are implemented by generating additional code and/or enabling additional code in the
standard C library. Runtime error checking has a nominal effect on code size and execution speed and can be
enabled on a module-by-module basis, making it practical for use in debugging large applications.

The following types of checks are provided:
• Bounds checking verify all pointer operations to detect buffer overflows and other illegal operations including:
 – Accessing uninitialized or null pointers
 – Accessing objects outside their declared bounds
 – Illegal pointer arithmetic
• Malloc / free checks uncover dynamic memory allocation errors including:
 – Write to freed memory
 – Multiple calls to free
 – Passing an invalid pointer to free
• Report an unhandled case value in a switch without a default part.

CPU Functional Problem Support

Semiconductor vendors regularly publish microcontroller errata sheets reporting deviations from the electrical
and timing specifications. As an integral part of best practice architecture support, the TASKING VX-toolset for
TriCore provides bypasses and checks for identified silicon defects. CPU functional problem support is provided
throughout the complete toolset, including:

• C-compiler bypasses adapt code generation in order to avoid the identified erratic instruction sequences.
• Assembler checks warn the assembly programmer for suspicious or erroneous instruction sequences.
• Protected C-library sets are built with bypasses for all identified CPU functional problems.

If reliability of your embedded application is essential, be sure to put support for CPU functional problems on your
list of compiler selection criteria. Through its close partnership with semiconductor vendors, TASKING offers the
most comprehensive support for this with its compilers.

Static Code Analysis

Static code analysis is a method used to verify all possible paths within a software program without actually
executing the program. A static code analysis tool can efficiently locate defects including out of bound array access,
memory allocation errors, arithmetic over and underflows, and inconsistent code fragments that go unnoticed
during dynamic tests or peer reviews. Static code analysis can be applied early in the software development
process, and can be applied on incomplete and incorrect code bases and when no test-cases need to be
developed.

TASKING has integrated static code analysis functionality for CERT C and MISRA C in its C compilers, with the advantage
that such an analyzer is aware about specific embedded software issues such as: The existence of special function
registers, the use of inline assembly language C-language extensions such as pointer and memory space qualifiers to
address multiple address spaces DSP specific data types such as circular buffers, and fixed point data types.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

Intrinsics

Certain assembly instructions have no equivalence in C. Intrinsic functions let you benefit from inclusion of those
assembly instructions in your application. Intrinsic functions are predefined functions for which the compiler
generates highly efficient assembly code. The compiler supports a wealth of intrinsic functions, including
dedicated functions for AURIX™ TC3xx family, enabling you to get the maximum efficiency out of the MCU.

The compiler always inlines the corresponding assembly instructions in the assembly source. Although it is
possible to inline assembly code by hand, intrinsic functions use registers more efficiently and their use prevents
your C source code from becoming less readable.

C Compiler for GTM

The TASKING TriCore toolset includes a fully integrated C compiler that supports the third generation Generic
Timer Module core from Bosch® which is present on AURIX™ TC3xx family. Programming a complex core like
the GTM in C makes you more productive both in the development phase as well as the maintenance stage. In
addition to an optimized programming approach with the TASKING TriCore compiler, the GTM C compiler also
supports the “C array” output format, enabling interoperability with third party toolsets. If you develop an AURIX™
TC3xx application with the C compilers for the TriCore and GTM from the VX-toolset for TriCore, you can re-use
your GTM application code in an RH850 or Power Architecture® based project with a C compiler for such MCU
from another vendor. (The GTM compiler is also available as a separate TASKING product.)

The first GTM core generation present on the AURIX™ variants is fully supported by means of the included MCS/
GTM assembler.

C Compiler for HSM

For programming the Hardware Security Module of the AURIX™ microcontrollers, the TASKING VX-toolset includes
a fully integrated and dedicated C/C++ compiler. This compiler is based on the standard C compiler for the
Cortex-M series from TASKING, and it can easily be accessed from the TriCore tool set’s IDE.

C Compiler for SCR

All AURIX™ TC3xx devices as well as select AURIX™ TC2xx derivatives, such as the TC26x series, have a dedicated
8-bit Standby Controller (SCR) on board. This controller is based on the Infi neon XC800 microcontroller and
TASKING has developed a new and highly optimizing C compiler to program this core with its limited memory
space. This exclusive compiler based on VX technology from TASKING, generates more efficient code than
traditional XC800 compilers and is therefore the ultimate programming tool to deal with the limited resources
of the Standby Controller. It is fully integrated in the VX-toolset for TriCore and does not require a third-party
compiler solution.

C Compiler for PCP

TASKING offers a unique C compiler for the TriCore Peripheral Control Processor (PCP). Despite the limited
functionality and restricted instruction set of the PCP, we have been able to develop a fully functional C compiler.
The C compiler delivers code at an unexpectedly high performance level and provides several special extensions
for PCP programming.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

CERT C

The CERT C/C++ secure coding standard is defined by the Computer Emergency Readiness Team (CERT), founded
by the US government. TASKING® is one of the first vendors to provide a CERT C coding guidelines analyzer built
into a C compiler for embedded software development.

MISRA C

MISRA C is driven by the Motor Industry Software Reliability Association and guides programmers in writing more
robust C-code by defining selectable C-usage restriction rules. Through a system of strict error checking, the use
of error-prone C-constructs can be prevented. The TASKING C compiler offers the industry’s first support for
MISRA-C:1998, MISRA-C:2004 and the latest MISRA-C:2012 guidelines, including Amendment 1: Additional security
guidelines for MISRA C:2012, dated April 2016.

INTEGRATED DEBUGGER

The integrated debugger has been redesigned from the ground up and is ready for trends like integrated kernel
awareness and multi-core debugging. Utilizing the Eclipse IDE workbench, it comes as a plug-in with a seamless
integration to the editing environment. With the VX-toolset for TriCore it provides two execution environments
serving various debugging needs.

Debugging Via Infineon DAS Support

Making the most of the On-Chip-DebugSupport
(OCDS) facilities built into the Infi neon TriCore
microcontrollers, our debugger offers an accessible,
high quality in-circuit-emulation functionality. The
VX-toolset has been tested and qualified with the Infi
neon Debug Access Server (DAS) solution. The DAS
environment is the universal emulation access software
architecture for all Infi neon microcontroller families.
Extensive support for DAS is guaranteed by Infi neon
and, as a result, TASKING has adopted this debug
standard. Through DAS, the TASKING TriCore debugger
is compatible with Infi neon TriBoard Starter Kits and
Application Kits with an on-board wiggler through
USB cable. This debugger is also compatible with the
Infineon DAS miniWiggler debug probe, enabling a very
cost-effective debug solution for on-hardware testing
for custom hardware or other evaluation boards.

Figure 2: Configuring the debugger is simple, with most
selections menu based.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

TriCore™ Instruction Set Simulator Debugging

The TriCore simulator debugger features instruction set simulation, allowing you to extensively debug and
regression test your application on your PC, even before your target hardware is available. A plug-in for instruction
set simulation of the PCP is also included.

Code Profiling

In addition to the profiling features built into the debugger, the compiler also has a profiler that uses code instru–
mentation. Code profiling can be used to determine which pieces of your code execute slower than expected and
which functions contribute to the overall execution time of a program. A profile can also tell you which functions
are called more or less often than expected. The advantage of this code profiling option in the compiler is that it
can give a complete call graph of the application annotated with the time spent in each function and basic block.

Figure 3: The debugger offers an easy-to-use environment.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

AURIX™ CONFIGURATION TOOLS

Advanced microcontrollers are equipped with a large number of on-chip peripheral modules, but the limited
number of pins on the chip usually does not allow all modules to be used simultaneously. The TASKING Pin
Mapper functionality removes the developer’s complex challenge of configuring chip hardware registers that are
used for assigning the peripheral module signals to the physical pins.

The Pin Mapper provides an interactive visual representation of the pin layout within the toolset IDE, through
which the developer can configure and review properties of the pins. The Pin Mapper reports errors or warnings
for possible connection conflicts, saving the developer from the tedious task of maintaining an overview of the pin
assignments in spreadsheets. You can solve pin conflicts by hand by making other connections, but when there
are many conflicts or in situations where most port pins are in use, it can be quite cumbersome and complex to
solve conflicts. The Pin Conflicts Solver can automate this process and will solve most conflicts for you. Through
the graphical editor and code generator from the TASKING Software Platform, you can quickly configure (Infi neon
iLLD) low-level drivers, various C files and header files, as well as the RTOS for use in final product applications.
This significantly simplifies the required steps to program an advanced microcontroller.

ECLIPSE IDE

The IDE, built on the Eclipse framework, provides a seamless workbench for the complete tool chain including
the debugger of the VX-toolset. The IDE provides facilities for project configuration and management, C/C++ and
assembly code-aware editing, build management, debugging, profiling and more. It provides functionality to help
you set up your embedded TriCore project and configure your target board settings to debug your project on
hardware.

The Eclipse editor supports C, C++, assembly language and header files with syntax highlighting, auto completion,
context assistance and tool tips. As you would expect from a de facto standard IDE, it provides full support for
all relevant source code version control systems. The Eclipse environment provides a single platform for many
diff erent embedded-product toolsets from diff erent vendors. The standardization on an industry-wide IDE
significantly reduces your learning curve, removes the barriers of changing development tools for diff erent
architectures, increases your productivity, and ultimately reduces the time to market with your end product. The
availability of plug-in modules to enhance or extend the feature set of the Eclipse IDE ensures that you can build
the workbench according to your development needs. With the concept of the open Eclipse framework, third
party tool vendors can now develop plugins that tightly integrate into various IDEs from diff erent vendors, unlike
proprietary IDEs where custom connectivity needs to be created.

The IDE in the VX toolset is based on the Mars release of Eclipse and the C/C++ Development Tools (CDT). TASKING
has built the integration blocks for the toolset and extensions to Eclipse to make the whole environment a
coherent workbench. Plus, with the Eclipse IDE, it is easy to integrate into third party, custom built systems.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

Figure 4: The TASKING VX toolset uses the de facto standard Eclipse IDE, making an easy learning curve.

AUTOMOTIVE SPICE CAPABILITY LEVEL 2 (ASPICE CL2)

The TASKING VX-toolset for TriCore is developed using an ASPICE CL2 process. Automotive SPICE is a framework
for designing and assessing software development processes. Effective implementations lead to better processes
and better product quality. It was developed by the consensus of several major car manufacturers. Automotive
SPICE has become a standard in the international automotive industry.

PRODUCT OVERVIEW: VX-TOOLSET FOR TriCore

www.tasking.com

WHICH BUNDLE IS
THE BEST FOR YOU?

The TASKING VX-toolset from TASKING® is available in
targeted bundles – Standard, Professional, Premium
and Enterprise Editions, allowing you to choose the
best fit for your application development activities.

The Enterprise Edition is the best choice if you want to
have all essential development tools around the C/C++
compiler integrated into one environment. In addition
to a software simulator, it offers an on-hardware
debugging solution – using anOCDS solution with a
USB-to-JTAG wiggler. The OCDS debugger is the most
cost-effective on hardware debug solution you can get.
The truly unique parts of the Enterprise Edition are the
C compilers for the HW Security Module (HSM), the
GTM, the SCR and the PCP, as well as the Code Safety
Checker for ASIL. If you plan to write your code for the
additional cores in C language, this Enterprise Edition
is the best and only option on the market.

The Premium Edition is nearly as comprehensive,
with the exception of the GTM compiler and the
integrated Code Safety Checker.

The Professional Edition provides many features of the Premium Edition, including the OCDS debugger and HSM
C compiler, but without the SCR and PCP C compilers. If you develop your application based on an AURIXТM with
HSM co-processor, or a TriCore derivative without the PCP, this Professional Edition is an attractive solution to
consider. Also, if you are fine with programming your TriCore with PCP in assembly code instead of C, this package
is a good choice. If you purchase this bundle, be sure to add the optional USB-to-JTAG miniWiggler in case your
hardware board comes without an on-board wiggler.

The Standard Edition is the perfect bundle for C/C++ programming and debugging with a simulator. The MCS/GTM
unit of the AURIXТM can be programmed through the included assembler, whereas the linker is fully prepared for
multi-core TriCore development. You can upgrade to the one of the other Editions at a later time, offering you all
included functionality under a unified interface.

Target architecture support

The TASKING VX-toolset supports all TriCoreTM
derivatives. From within the Eclipse IDE you can
easily select the TriCoreTM device of your choice for
your project:

AURIXTM TC3xx family: TC39x, TC38x, TC37x,
TC36x, TC35x, TC33x; AURIXTM TC2xx family:
TC21x, TC22x, TC23x, TC23x_ADAS, TC26x,
TC27x, TC29x; TriCore™ devices: TC1130, TC1166,
TC1167, TC1184, TC1197, TC1337, TC1367,
TC1387, TC1736, TC1746 [TC1782bd], TC1724,
TC1728, TC1748 [TC1798bd], TC1762, TC1764,
TC1766, TC1767, TC1768 [TC1387bd], TC1782,
TC1791, TC1792, TC1793, TC1796, TC1798

TASKING active relationship with Infineon®
Technologies enables us to support new
derivatives already in the toolset prior to their
availability in volume.

