TASKING.

Programming the Bosch® GTM
Using the Traditional C Array Approach

Henk-Piet Glas

Technical Product Specialist

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

PROGRAMMING THE BOSCH® GTM USING THE TRADITIONAL C ARRAY APPROACH

INTRODUCTION

Today's multi-core technology expects toolset vendors to extend their compiler toolset with add-on compilers for
specialized ‘guest’ cores alongside the main CPU. An AURIX™ core, for example, is equipped with multiple TriCore®
cores, an HSM core, an SCR core and a GTM core, each requiring their own specific compiler while being tightly
connected in terms of actual silicon. The TASKING tool suite provides fully integrated compilers allowing you to
target code for the primary CPU and any of its guest cores.

Not every toolset vendor stays up to par with the latest developments and there has been an increasing demand to
offer a commercially available standalone MCS C compiler that can be used in conjunction with third-party compilers.
In such a symbiosis, the partnership supports both the primary CPU, using a third-party compiler, and the add-on
MCS core using TASKING. This demand heralded the advent of the standalone TASKING VX-toolset for MCS - a
compiler capable of building unexpected relationships. More accurately, this compiler allows for programming the
MCS on RH850, Power Architecture and AURIX™ architectures.

The standalone TASKING VX-toolset for MCS was developed in collaboration with Bosch®. A key feature to establish
integration is the locator’s ability to generate a C array output containing the MCS program image, a feature inherited
from the original Bosch® assembler. Using a minimalistic sample case, this paper discusses its format and shows
how to correlate it to your map file. Also we explain how to integrate the C array code into a project of any third-
party compiler; running the sample code as a proof of concept.

But like with any good story you need to start at the beginning. We will be exploring what spawned all of this into
existence and how it will impact the future.

THE GTM ARCHITECTURE

The ® implements a generic timer platform for complex applications in the automotive industry
like power train, power steering, chassis and transmission control. To serve these different application domains,
the GTM provides a wide range of timer functions like counters, multi-action capture/compare, PWM functions,
duty-cycle measurements and more.

In addition, the GTM includes internal RISC-like programmable cores for data processing and complex output
sequence generation [1]. These cores are called multi-channel sequencer cores, or MCS cores for short. Its IP, now
capable of being programmed through the TASKING standalone MCS C compiler, is designed to run with minimal
CPU interaction while unloading the CPU from handling interrupt service requests as much as possible.

The GTM design is owned by . An SoC design can incorporate its IP alongside the main CPU
using one or more GTM instances. Each GTM can have one or more MCS cores, and each MCS core implements 8
channels.

www.tasking.com TASKING .

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

MCS AND CPU SAMPLE PROGRAMS

Listed below is the sample program that will be used throughout the course of this paper. The sample program
consist of two parts. The first part shown below in Figure 1 (left) is the code that will run on an MCS core. The second
part in Figure 1 (right) is the code that will run on the hosting architecture (SoC) and interact with the generic timer
module (GTM). The sample code is minimalistic in nature, since the aim is not to go deep in terms of functionality,
but instead demonstrate what you need to do to hook up your application code into the project of your compiler.

B €] main.c &
lg] cinfo.c 23 @ A EET]
FERT #include <stdio_h>
& cinfo. CD #include <time.h>

#include "cinfo_gtmse_a5_mcsea.h"

#include <stdio.h>

#define SPRN_GETVERSION 1@
#define SPRN_GETREVISION 28

volatile Bool gotversion;
volatile _Bool gotrevision;

int n; /* left, shared with SoC co
/* below, future release intrinsics */ S ——
int revision;

F- int main(void) SoC equals AURIX */

#if ((10*_ VERSION)4 REVISION) <= 38812
inline int _ get_sta(void) {return STA;}
inline void _ set_sta(int x) {STA=x;}

ttendif

__enable(); enable interrupts */

set MCS@::CH
/* and enable M

number */

SRC_GTMMCSB1.U = (1<<18) | SPRN_GETVERSION;
GTM_MCS@_CHL_TRQ_EN.U = 1

i i i set MCS0::CH2 s
B void _EE'IEIHI"IEI(:I_:] gEtVEI‘SIDnI:\.'Dld:] 7+ and Enable\- 1cse
{ £ ,Ela:"" MCS CC?"Pi ler version to SoC */ SRC_GTMMCSB2.U = (1¢€1@) | SPRN_GETREVISION;
n = VERSION - GTM_MCSB_CH2_IRQ_EN.U = 1;
T Ly

6THM_MCS®_CH1_CTRL.U = 1;
while (gotversion==8);

r MCS __channel(1) */

r MCS acknowledge

__set sta(get sta()|2);

}

GTM_MCS@_CH2_CTRL.U = 1; /'

ger MCS _ channel(2) */
while (gotrevision==8); r 1

MCS acknowledge =/

report "TASKING VX-t ion and revisio

—void _ channel(2) getrevision(void) o
{ /* relay MCS compiler revision to SoC */
n = _REVISION ;
__set sta(get sta()|2);

printf("C-array generated by: TASKING VX-toolset for MCS vid.¥dr¥d\n”
,version/1606
,version¥16e8
,revision);

return ;
void _interrupt(SPRN_GETVERSION) getversion(void)
/* ser nterrupt from MCS _ channel(1)
. . . version = (int) cinfo_gtm3@_05_mcs@8[CINFO_GTM3@_85_MCS00_n];
int main(wvoid) gotversion - 1; /* shared variable 'n' returned version */

{ /* main is implici
return @;

y _ channel{@)

pt(SPRN_GETREVISION) getrevision(void)
nterrupt from MCS _ channel(2) */

int) cinfo_gtm3e_e5_mcsee[CINFO_GTM30_85_MCS09_n;
} gotrevision = 1; shared variable 'n' returned revisien

Figure 1 - Sample program for an MCS core

MCS PROJECT SETTINGS

The MCS core project settings primarily consist of default settings. Those noteworthy to building the application are:

1. Processor Settings
2. Linker Map File
3. Linker Output Format

Of each of these you'll find snapshots listed below. Note that the version of the MCS core is 3.0 and that the target
code is configured for core mcs00. Further note that the project uses the classic map file generation listing only the
locate result. Finally note that the linker output format has been set to C array.

www.tasking.com TASKING .

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

{i] Properties for cinfo

type filter text

> Resource
Builders
a4 C/C++ Build
Build Variables
Envircnment

Processor

Configuration: |Debug [Active]

Logging Processor selection
Memory a [] Bosch GTM basic definitions
Processor 4 [J] GTM30
Settings [] GTM30_01
Stack/Heap [] GTM30_02
s CfC++ General [GTM30_03
Project References GTH30.04
Run/Debug Settings [.GTMBO:U.S-
[GTM30_08Ly
[7] GTM30.07
[7] GTM30_08
[7] GTM30_09
[] GTM30_10
7] GTM31

Multi-core configuration

Use cenfiguration: | mes00 -

[¥] Update CPU of referenced/referencing projects

—
|

[7] Generate XML map file format (.mapxml] for map file viewer

f""'Include call graph information
[[]Include processed files information
[TlInclude information on invocation and toals

[[Include link result information

Include locate result infermation

[T Include memery usage informaticn

[T}Include information on removed sections

|l Include information of non-alloc sections

| Include overlay information

TInclude module local symbaols information

Include cross references information
|_|Include processor and memory information

" Include locate rules

Build Artifact | [n} Binary Parsers !—@ Err

]L. Generate Intel Hex format file
"] Generate S-records file

e

[¥| Generate C array file

Create file for each memony chip

Emit start address record

[¥] Emit list of exported symbols

Figure 2 - MCS project settings - processor settings (top), linker map file (middle) linker output format (bottom)

TASKING .

www.tasking.com

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

CORRELATING AND LOCATING RESULTS OF A C ARRAY FOOTPRINT

Now that the MCS project has been set up, you can proceed to build. A few files will be generated as a result:

+ cinfo_gtm30_ 05 mcs00.c (C file below)
+ cinfo_gtm30 05 mcs00.h (H file below)

* cinfo.map (map file below)

The C file contains the MCS program image footprint poured into an array. This includes both code and data. The
H file contains offsets within the array pointing to functions and global variables. This essentially creates a symbol
table. Since the MCS core is memory mapped within the hosting architecture, the combination of these two files
allows the third-party compiler to (a) locate the program image at its designated base address and (b) peek or poke
MCS data or code. Listed below are snapshots of both the C file and H file.

' [€] cinfo_gtm30_05_mes00.c 52 B cinfo_gtm30_05_mes00h 32
@® * Generated by TASKING VX-toplset for MCS: @& * gGenerated by TASKING VX-toolsetr for MCS: object 1i

#ifndef CINFO_GTM38_@5_MCSE8_H

Fimeletle: " einfo gl 85 mesl:h #define CINFO GTM3@ 85 MC586 H

unsigned long Cl”f‘:' gtm38- B5_mcs@d[] = { extern unsigned long cinfo_gtm3@ 85 mcsee[];
BxEaeBBa7E, [@
BxEaap0844 , '* Locations of symbols as index in the associated C
axEapBea24, #deflne CINFO GTrﬁBB 85 _MCS88_getversion 17
BxEQ00aR0C, #define CINFD_GW3B_B5_|"1CSBB_FI 8
S ae= CEOTenne e Bt rbeciision'
erine L main

Rl imapa Lt 2 /* #define CTE' GTHZE 85 ! cEec
@xEeBBEALE, J/* #define CINFO. GTM38 85 M e
exEeenealc, #define CINFO_GTM38 85 MCSB8 START 38
exeaeoeae, #define CINFO_GTM3@_B5_MCS@E_lc_ub_stack main 35
Bx15680082 , #define CINFO GTM3@ @5 MCSB®_ Exit 27
@xASB20820 , #defme CINFO_GTM38 95 .‘iCSBE) exit 27
BxASER0000, it Aot CENER) S
BX55600802, "_de ine CINEQ 2 ,—-' bE
BxAB5R0000, ifde’r":_ne CLI\: 8 _es 5

/* #def 'ne CIN @ _8s 4
BxA2800800, /* #define CIN 36_65_M 3
@x42FFFFFE, R, CINFO_GTM38_85_MCSB8 lc ub stack @ 35
BxAB280800 ,
Bx158B88E89 ,
BxASB28828 ,
BrASEREREE ,
Bx 550868862 ,

BxABSBABEE ,
BnAZBBEBEE ,

Figure 3 - MCS data code snapshots for C and H files

www.tasking.com TASKING .

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

The best exercise to get an understanding of the C array program image footprint is to try and correlate some of its
H file symbols to actual addresses in the map file or the simulator’s disassembly window. As an example let's try to
cross-reference function getrevision in Figure 4 below (note that the snapshot is folded to increase resolution).

cinfo_gtm30_05_mcs00.h &3

extern unsigned long cinfo_gtm3e_e5_mcsee[];

“ Locations of symbols as index in the associated C array */
#define CINFO_GTM38_B5_MCSe8_getversion 17
#define CINFO GTM3@ 85 MCS@8 n 8
#define CINFO_GTM38_85 MCSB8_getrevision 9
Fdefine CINFO_GTME@_B5_MC50@_main 25

“ #define CINFO_GTM3@_85 MCS@@_.vector.l 1

* #define CINFO_GTM3B_B5_MCS@8_.vector.2 9 */
#define CINFO_GTM3@_@5_MCS8@__ START 3@
] I

m

I cinfo.map 2
,, =
| Section | Size (MaU) | Space addr | Chip addr |

.vector.@ (48) Ox0e000004 | Ox8 oxa

-vector.1 (47) 4 4 :"
.vector.2 (46) s
.vector.3 (45) 3
.vector.4 (44) 18 18
.vector.5 (43) 14 14
.vector.6 (42) 18 18
.vector.7 (41) 1lc 1c
.mcshss.cinfo.n (4) 4] 8
[-mcstext.cinfo.getrevision (2) a r 4]
.mcstext.cinfo.getversion (1) a 44 L4
.mcstext.cinfo.main (3)

-mcstext.libe._Exit (18)

.mcstext.libc._ START (17) 14 78 78
stack 8 (32) 8

Disassembly £2

o= Outline
cinfo_gtm30_05_mes0.c 2

® Generated by TASKING VX-toolset for MC « Address: 0x000000

@OG00D 78 OO @0 e@ jmp _ START (@x78)

#include "cinfo_gtm3@_85_mcs®a.h"

unsigned long cinfo_gtm3@_85_mcsee[] = {

BXE@@RERTS, /* @ *
BxE@888844, /= 1 */
BxE@@EEROC, /- 3 */
BxEGB08818, /-
BXEGBREB14,

BXEGBBAR1E, /

BxEGBBBB1C, /*
Pxee0R0000, /*

BxASB20028, |
@xASERaREE, /
Bx55eaa882, /

BxA2B00008, |
@x42FFFFFE, |
@xAB2B0000, /
B8x15e@@BE9, /* 17
@xASB20028, /T I
@xASERaREE, /
Bx55eaa882, /
@xABSBEGRE, /
BxA2B00008, |
@x42FFFFFE, |
@xAB2B0000, /
Bxl2eaa008, |
exE@R4BERR, /

m

200004 44 @8 B8 8 jmp

__mcstext_cinfo_getversion (@x44)

0008 24 00 @8 e jmp

__mestext_cinfo_getrevision (9x24)|

GeBEec Bc BB BB eB Jmp Bxc
@eeele 18 @@ @8 =8 Jjmp axie
00014 14 00 @2 e jmp exl4
@0eR18 13 @2 @0 @ Jjmp ex18
@eeelc 1c @@ @8 8 Jjmp axlc

.sdecl '.mcsbss.cinfo.n’

@0e820 02 0@ @0 8@ <illegal opcode BEBAEEE2>

mowvl r5,#2

000024 02 02 @8 15 movl r5,exeeoee002
mr r5,n

@aea2s 28 8@ 82 a5 mwr r5,Bxaeneae2e
mov r5,sta

@0002c 00 00 30 a5 mov r5,sta
orl r5,#2

000032 02 00 @8 55 orl r3,exeeoee002
mov sta,r5

@aee34 22 2@ 58 a8 mov sta,rS
mov r2,sta

200033 00 00 30 a2 mov r2,sta
andl r2,#16777214

eppa3c fe ff ff 42 andl r2,exeefffffe
mov sta,r2

epee4n B2 2@ 28 a8 mov sta,r2
movl r5,#3001

@eeB44 b9 @b @8 15 movl r5, 8x00086bba

mar r5,n
GAGAAR_ IR _GA_ AT a5 __mur

rS_AvOBRRRARA TR

Figure 4 - Cross-referencing functions in a C array program

The symbol value for getrevision equals decimal 9. For an architecture with sizeof (long) equal to 4 this makes
for an offset of decimal 36 or hexadecimal 24. Note that for this address the C array contains an instruction code of
0x15000002 which the simulator disassembly window translates to movl r5, 0x2 which is a preload of predefined
MCS compiler macro REVISION _ (since we used MCS v3.1r2) into register r5. Note that function getversion was
coded with _ channel (2), which means MCS address 0x000008 must contain a matching jump vector. This is

achieved by MCS instruction code 0xE0000024 residing at decimal offset 9 within the C array.

www.tasking.com

TASKING .

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

ESTABLISHING THIRD-PARTY SYMBIOSES

Once you have the C array footprint, copy it to your third-party compiler project and make sure it is located at
its designated MCS base address. Each third-party declares this their own way but generally you'll find language
extensions similar to the TASKING _ at () keyword. You need to add this to the C array declaration yourself.
Alternatively, you can leave the C array unscathed and use a locator equivalent. That's all it takes! The startup code
of your toolchain will initialize the C array in the normal fashion, effectively bootstrapping the MCS program image
into memory. Once that is all done, it only needs a little push to kick it into motion. You'll see this in the second part
of the sample code in Figure 5.

As proof of concept we used the TASKING VX-toolset for TriCore v6.0r1 to act as a third-party compiler and
proceeded to incorporate the C array footprint. The snapshot on the next page shows what that looks like. Note the
usage of Pragma (“section fardata mcs00”) to assure a unique section for the MCS C array. Also note that
the linker script language (LSL) is subsequently used to anchor it to core mcs00. Finally, note what happens if you

runitonan [2] using TASKING file system simulation (FSS). This will provide obvious proof that
the MCS program was downloaded properly and behaves as intended.

[8) cinfo_gtm30_05_mcs00.c 35 (Brss 5
@ * Genersted by TASKING VX-toglset s ||C-array generated by: TASKING VX-toolset for MCS v3.1r2 a

#include "cinfo gtm3@ 05 mcses.h”

_Pragma("section fardats mcsee”);

BXEBBOOOTE,

exELesBRds, /* 1 */
@xEG0B0024, /
@xEGB0000C,
@xEBBE001E,
BxEBBB0814,
BxEQR80818,
@xEG80001C,
0xP0000000, /T 3 */
@x15800002, /* 9 */
auvasmrgnta (% 1o)
Gt |

nsigned long cinfo_gtm3e_@5 mcse¢
e*/

[l cinfoulsl 52
£/ IASKLNVG VA-TODISET
// Eclipse project linker script file

= #if defined(_PROC_TC27XC_)
#include "tc27xc_tcd.1s1"
derivative my tc27xc extends tc27xc

}
#else[]
section layout mpe:tc@:linear
group mcs8@_base (ordered,run_addr=addressof (mem:mpe:mcs@8))

select ".data.mcs@e”;

}

}

Figure 5 - Code snapshot incorporating a C array footprint

It should be noted that because we used a TASKING compiler for testing, the SFRs used in the sample code are
specific to TriCore® and will most likely be different from your primary architecture. There’s also a chance that your
third-party toolchain uses different keywords for the TASKING interrupt and Bool qualifiers. Some extra
tweaks may be required before you can actually build and run the code.

The TASKING startup code for TriCore® automatically enables the MCS memory, whereas your third-party toolchain
might leave that up to you. Whereas the TASKING toolset can immediately ‘bootstrap’ the code into MCS memory
(provided the C array program image has been located properly at its base address) your third-party project will
need user code to do that same copy.

If your third-party toolchain/debugger does not support a similar mechanism to TASKING file system simulation
then you may not receive output from your debugger. If this happens you can restrict debugging to placing watches
onvariables version and revision.

www.tasking.com TASKING .

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

CONCLUSION

The TASKING VX-toolset for MCS is the ideal partner when your third-party toolset is limited to code generation
for the CPU of the hosting architecture. With its traditional linker C array output, the MCS toolset generates a pure
ANSI-C application footprint that can be woven into the project of your primary CPU with little effort, other than
making sure that it's located properly to its designated MCS base address. With the help of the TASKING standalone
compiler for the GTM, you'll be able to enhance your development environment for programming complete RH850,
Power Architecture or AURIX™ based applications, regardless the C compiler used for the primary CPU.

Additional Resources:

[11 Bosch GTM IP Module. Web.

[2] Infineon TriBoard Development Boards.

www.tasking.com TASKING .

