
®

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

PROGRAMMING THE BOSCH® GTM USING THE TRADITIONAL C ARRAY APPROACH

INTRODUCTION

Today’s multi-core technology expects toolset vendors to extend their compiler toolset with add-on compilers for
specialized ‘guest’ cores alongside the main CPU. An AURIX™ core, for example, is equipped with multiple TriCore®
cores, an HSM core, an SCR core and a GTM core, each requiring their own specific compiler while being tightly
connected in terms of actual silicon. The TASKING tool suite provides fully integrated compilers allowing you to
target code for the primary CPU and any of its guest cores.

Not every toolset vendor stays up to par with the latest developments and there has been an increasing demand to
offer a commercially available standalone MCS C compiler that can be used in conjunction with third-party compilers.
In such a symbiosis, the partnership supports both the primary CPU, using a third-party compiler, and the add-on
MCS core using TASKING. This demand heralded the advent of the standalone TASKING VX-toolset for MCS - a
compiler capable of building unexpected relationships. More accurately, this compiler allows for programming the
MCS on RH850, Power Architecture and AURIX™ architectures.

The standalone TASKING VX-toolset for MCS was developed in collaboration with Bosch®. A key feature to establish
integration is the locator’s ability to generate a C array output containing the MCS program image, a feature inherited
from the original Bosch® assembler. Using a minimalistic sample case, this paper discusses its format and shows
how to correlate it to your map file. Also we explain how to integrate the C array code into a project of any third-
party compiler; running the sample code as a proof of concept.

But like with any good story you need to start at the beginning. We will be exploring what spawned all of this into
existence and how it will impact the future.

THE GTM ARCHITECTURE

The Bosch® GTM core implements a generic timer platform for complex applications in the automotive industry
like power train, power steering, chassis and transmission control. To serve these different application domains,
the GTM provides a wide range of timer functions like counters, multi-action capture/compare, PWM functions,
duty-cycle measurements and more.

In addition, the GTM includes internal RISC-like programmable cores for data processing and complex output
sequence generation [1]. These cores are called multi-channel sequencer cores, or MCS cores for short. Its IP, now
capable of being programmed through the TASKING standalone MCS C compiler, is designed to run with minimal
CPU interaction while unloading the CPU from handling interrupt service requests as much as possible.

The GTM design is owned by Robert Bosch® GmbH. An SoC design can incorporate its IP alongside the main CPU
using one or more GTM instances. Each GTM can have one or more MCS cores, and each MCS core implements 8
channels.

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

MCS AND CPU SAMPLE PROGRAMS

Listed below is the sample program that will be used throughout the course of this paper. The sample program
consist of two parts. The first part shown below in Figure 1 (left) is the code that will run on an MCS core. The second
part in Figure 1 (right) is the code that will run on the hosting architecture (SoC) and interact with the generic timer
module (GTM). The sample code is minimalistic in nature, since the aim is not to go deep in terms of functionality,
but instead demonstrate what you need to do to hook up your application code into the project of your compiler.

MCS PROJECT SETTINGS

The MCS core project settings primarily consist of default settings. Those noteworthy to building the application are:

1. Processor Settings

2. Linker Map File

3. Linker Output Format

Of each of these you’ll find snapshots listed below. Note that the version of the MCS core is 3.0 and that the target
code is configured for core mcs00. Further note that the project uses the classic map file generation listing only the
locate result. Finally note that the linker output format has been set to C array.

Figure 1 - Sample program for an MCS core

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

Figure 2 - MCS project settings - processor settings (top), linker map file (middle) linker output format (bottom)

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

CORRELATING AND LOCATING RESULTS OF A C ARRAY FOOTPRINT

Now that the MCS project has been set up, you can proceed to build. A few files will be generated as a result:

• cinfo_gtm30_05_mcs00.c (C file below)

• cinfo_gtm30_05_mcs00.h (H file below)

• cinfo.map (map file below)

The C file contains the MCS program image footprint poured into an array. This includes both code and data. The
H file contains offsets within the array pointing to functions and global variables. This essentially creates a symbol
table. Since the MCS core is memory mapped within the hosting architecture, the combination of these two files
allows the third-party compiler to (a) locate the program image at its designated base address and (b) peek or poke
MCS data or code. Listed below are snapshots of both the C file and H file.

Figure 3 - MCS data code snapshots for C and H files

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

The best exercise to get an understanding of the C array program image footprint is to try and correlate some of its
H file symbols to actual addresses in the map file or the simulator’s disassembly window. As an example let’s try to
cross-reference function getrevision in Figure 4 below (note that the snapshot is folded to increase resolution).

The symbol value for getrevision equals decimal 9. For an architecture with sizeof(long) equal to 4 this makes
for an offset of decimal 36 or hexadecimal 24. Note that for this address the C array contains an instruction code of
0x15000002 which the simulator disassembly window translates to movl r5,0x2 which is a preload of predefined
MCS compiler macro __REVISION__ (since we used MCS v3.1r2) into register r5. Note that function getversion was
coded with __channel(2), which means MCS address 0x000008 must contain a matching jump vector. This is
achieved by MCS instruction code 0xE0000024 residing at decimal offset 9 within the C array.

Figure 4 - Cross-referencing functions in a C array program

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

ESTABLISHING THIRD-PARTY SYMBIOSES

Once you have the C array footprint, copy it to your third-party compiler project and make sure it is located at
its designated MCS base address. Each third-party declares this their own way but generally you’ll find language
extensions similar to the TASKING __at() keyword. You need to add this to the C array declaration yourself.
Alternatively, you can leave the C array unscathed and use a locator equivalent. That’s all it takes! The startup code
of your toolchain will initialize the C array in the normal fashion, effectively bootstrapping the MCS program image
into memory. Once that is all done, it only needs a little push to kick it into motion. You’ll see this in the second part
of the sample code in Figure 5.

As proof of concept we used the TASKING VX-toolset for TriCore v6.0r1 to act as a third-party compiler and
proceeded to incorporate the C array footprint. The snapshot on the next page shows what that looks like. Note the
usage of _Pragma(“section fardata mcs00”) to assure a unique section for the MCS C array. Also note that
the linker script language (LSL) is subsequently used to anchor it to core mcs00. Finally, note what happens if you

run it on an Infineon® TriBoard [2] using TASKING file system simulation (FSS). This will provide obvious proof that
the MCS program was downloaded properly and behaves as intended.

It should be noted that because we used a TASKING compiler for testing, the SFRs used in the sample code are
specific to TriCore® and will most likely be different from your primary architecture. There’s also a chance that your
third-party toolchain uses different keywords for the TASKING __interrupt and _Bool qualifiers. Some extra
tweaks may be required before you can actually build and run the code.

The TASKING startup code for TriCore® automatically enables the MCS memory, whereas your third-party toolchain
might leave that up to you. Whereas the TASKING toolset can immediately ‘bootstrap’ the code into MCS memory
(provided the C array program image has been located properly at its base address) your third-party project will
need user code to do that same copy.

If your third-party toolchain/debugger does not support a similar mechanism to TASKING file system simulation
then you may not receive output from your debugger. If this happens you can restrict debugging to placing watches
on variables version and revision.

Figure 5 - Code snapshot incorporating a C array footprint

EXTENDING YOUR THIRD-PARTY IDE WITH TASKING® VX-Toolset FOR MCS

www.tasking.com

CONCLUSION

The TASKING VX-toolset for MCS is the ideal partner when your third-party toolset is limited to code generation
for the CPU of the hosting architecture. With its traditional linker C array output, the MCS toolset generates a pure
ANSI-C application footprint that can be woven into the project of your primary CPU with little effort, other than
making sure that it’s located properly to its designated MCS base address. With the help of the TASKING standalone
compiler for the GTM, you’ll be able to enhance your development environment for programming complete RH850,
Power Architecture or AURIX™ based applications, regardless the C compiler used for the primary CPU.

Additional Resources:

[1] Bosch GTM IP Module. Web.

http://www.bosch-semiconductors.de/en/automotive_electronics/ip_modules/timer_ip_module/timer_platform_1.html

[2] Infineon TriBoard Development Boards.

http://www.infineon.com/cms/en/product/microcontroller/development-tools-software-and-kits/tricore-tm-development-

tools-software-and-kits/aurix-starter-and-application-kits/channel.html?channel=5546d4614babddc8014bbc8126de00ad

